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Abstract—Signal processing stands as a pillar of classical
computation and modern information technology, applicable
to both analog and digital signals. Recently, advancements in
quantum information science have suggested that quantum signal
processing (QSP) can enable more powerful signal processing
capabilities. However, the developments in QSP have primarily
leveraged digital quantum resources, such as discrete-variable
(DV) systems like qubits, rather than analog quantum resources,
such as continuous-variable (CV) systems like quantum oscilla-
tors. Consequently, there remains a gap in understanding how
signal processing can be performed on hybrid CV-DV quantum
computers. Here we address this gap by developing a new
paradigm of mixed analog-digital QSP. We demonstrate the
utility of this paradigm by showcasing how it naturally enables
analog-digital conversion of quantum signals— specifically, the
transfer of states between DV and CV quantum systems. We then
show that such quantum analog-digital conversion enables new
implementations of quantum algorithms on CV-DV hardware.
This is exemplified by realizing the quantum Fourier transform
of a state encoded on qubits via the free-evolution of a quantum
oscillator, albeit with a runtime exponential in the number of
qubits due to information theoretic arguments. Collectively, this
work marks a significant step forward in hybrid CV-DV quantum
computation, providing a foundation for scalable analog-digital
signal processing on quantum processors.
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Quantum Fourier Transform, Sampling and Interpolation, Hy-
brid Discrete-Continuous-Variable System, Quantum Computing
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I. INTRODUCTION

The ability to process signals in an efficient and robust man-
ner is a cornerstone of engineering and technology, from audio
and speech recognition, to computer design and communica-
tions [1], [2]. In the wake of modern computers, sophisticated
frameworks and algorithms have been developed to process
classical signals, including the fast Fourier transform [3],
Shannon sampling [4], and filter design [5].

Classical signal processing has benefited from both digital
and analog computing devices [6]–[9]. While digital signal
processing enables the processing of discretized signals, ana-
log signal processing is particularly useful for processing
continuous signals, such as audio and speech data [10]–
[12]. Hybrid analog-digital computing [13], [14] has also
shown great promise, with notable applications in improving
energy efficiency and solving nonlinear partial differential
equations [15], [16].

In contrast to the classical setting, quantum systems, gov-
erned by the laws of quantum mechanics, exhibit funda-
mentally different behavior than their classical counterparts
and have been shown to facilitate more powerful models of
computation than classical computers [17]–[19]. It is therefore
natural to ask if quantum computation can process signals
more efficiently and powerfully than classical methods.1

A pioneering work in this direction [20] introduced a
quantum-inspired signal processing paradigm predicated on
quantum-mechanical concepts, to design an array of novel
classical signal processing methods. Extending this line of
research, Refs. [21]–[23] proposed quantum signal processing
(QSP) as a quantum algorithm that enables the design and
implementation of a polynomial transformation of a quantum
amplitude. QSP has since been generalized to transform a
linear operator embedded in a larger Hilbert space, lead-
ing to the celebrated quantum singular value transformation
(QSVT) [24], [25]. As an illustration of the power of QSP
and QSVT, Ref. [26] shows how major quantum algorithms,
including Grover search, Shor’s factoring algorithm, and
Hamiltonian simulation, can all be realized through QSVT.
Inspired by this remarkable progress, a number of recent works
have further generalized QSP and QSVT [27]–[32], studied
the noise robustness of QSP [33], [34], presented algorithms

1In posing this question, we are interested in processing quantum signals
(quantum amplitudes) using quantum resources, rather than processing clas-
sical signals on a quantum computer.
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for efficient computation of QSP/QSVT transformations [35]–
[38], and showcased applications of QSP/QSVT to relevant
problems [39]–[44].

These developments in QSP rely on the capabilities of
digital quantum computers, in which quantum states are
encoded in discrete-variable (DV) systems, i.e., qubits (or
possibly qudits). Separate from these DV systems, continuous-
variable (CV) quantum systems, such as the quantum harmonic
oscillator, are ubiquitous in practice and also provide useful
quantum resources [45], [46]. A prominent example of such
CV systems is the electromagnetic (EM) wave used in wireless
and communications [47], [48], which obey classical wave
mechanics at high intensity, but exhibit quantum effects at
low intensity. Recent experimental progress in the control
and engineering of CV quantum systems has made them
essential to quantum information science, prompting efforts
to harness CV systems for computation [46], [49]–[61]. In
this direction, recent works have developed hybrid CV-DV
quantum processors [57], [61], which combine DV and CV
quantum systems into a powerful new framework for quantum
computation, with natural applications to problems such as
simulating coupled fermion-boson systems [61], [62].

Because QSP algorithms have primarily leveraged DV quan-
tum systems, we currently lack the ability to use CV systems
and hybrid CV-DV processors in this context. This is in
stark contrast to the situation in classical signal processing,
which has profited from both analog and digital modes of
computation. A major challenge in extending QSP to CV and
CV-DV quantum systems is the drastic differences between
DV and CV quantum states. For instance, while DV quantum
states have finite dimensionality, CV quantum states have
infinite dimensionality and are supported over the entire real
axis in position space.

In this work, we address this challenge by establishing
a framework of mixed analog-digital QSP, which enables
processing of quantum signals on hybrid CV-DV quantum
hardware. Our framework encompasses two signal processing
primitives: (1) hybrid single-variable QSP for constructing
polynomial transformations of either position x̂ or momentum
p̂, and (2) hybrid non-Abelian QSP for constructing polyno-
mial transformations of both x̂ and p̂. We use “non-Abelian”
to refer to the fact that the quantum mechanical operators
x̂ and p̂ do not commute, i.e., [x̂, p̂] = x̂p̂ − p̂x̂ ̸= 0.
The polynomials achievable with the hybrid single-variable
QSP are characterized by the QSP theorems established in
Refs. [21]–[23], [44], whereas the polynomials achievable with
hybrid non-Abelian QSP are in principle more powerful [61]
but a complete theory has yet to be established.

The ability to perform QSP on CV-DV hardware provides
a cookbook for implementing quantum algorithms on hybrid
quantum processors. To facilitate the development of these
algorithms, one requires a mechanism to reliably convert
between CV states and DV states. It is known that such analog-
to-digital (AD) and digital-to-analog (DA) conversion can be
accomplished in classical signal processing via sampling and
interpolation, respectively. However, a quantum analogue of
these concepts is not obvious [63], yet strides have been made
in the context of the Gottesman-Kitaev-Preskill code [64],

[65]. A key distinction between classical and quantum AD/DA
conversion is that the quantum case must be unentangling:
the input and output states must be unentagled across the DV
and CV systems, as otherwise information in the initial state
will remain in the quantum correlations between the systems,
inaccessible to either party individually. As the concept of en-
tanglement does not exist classically, this requirement must be
treated with care. Here we show how such a quantum AD/DA
conversion mechanism is naturally enabled by mixed analog-
digital QSP. In particular, we illustrate two protocols that
transfer a DV state into an equivalent CV state, and vice-versa,
and provide analytical error bounds on their performance. The
first protocol is constructed with hybrid single-variable QSP,
while the second protocol, initially introduced in Ref. [66],
can be recontextualized as an instance of non-Abelian hybrid
QSP.

As an application of this paradigm, we use our quan-
tum AD/DA conversion protocols to implement the quantum
Fourier transform of a state on qubits by using the natural
dynamics (free-evolution) of an oscillator. This is realized in
three steps: 1) transferring the initial state on qubits to an
oscillator; 2) performing free-evolution of the oscillator; 3)
and transferring the oscillator state back to qubits. Importantly,
our construction is fully coherent and does not require post-
selection, in contrast to an alternative construction put forth
in Ref. [67]. From a signal processing perspective due to
the Nyquist criteria, the required CV oscillator phase space
area (analog signals) must be proportional to the Hilbert
space dimension of the DV system (number of data points
for digital signals) to avoid significant loss of information
for general quantum states. This renders the runtime of our
protocol (or physical resources required) necessarily linear in
the dimension of the DV Hilbert space (i.e. exponential in the
number of qubits), despite the fact that the gate count can still
scale polynomially.

The rest of the paper is organized as follows. We first
review basics of signal processing and hybrid DV-CV quantum
systems in Sec. II, and subsequently present mixed analog-
digital QSP in Sec. III, including hybrid single-variable QSP
and non-Abelian hybrid QSP. Then in Sec. IV, we present
two protocols for quantum AD/DA conversion. Armed with
hybrid QSP and quantum AD/DA conversion, in Sec. V we
show how to realize the Fourier transform of a DV quantum
state by the free evolution of a CV system. Finally, in Sec. VI
we conclude and discuss the outlook of this work.

II. OVERVIEW OF SIGNAL PROCESSING AND CV-DV
QUANTUM SYSTEMS

In this section, we present the concepts that underlie
classical signal processing and quantum signal processing,
with the aim of familiarizing readers from either commu-
nity with the necessary background to understand this work.
Sec. II-A overviews classical signal processing, and highlights
the continuous-discrete and periodic-aperiodic nature of clas-
sical signals. Thereafter, Sec. II-B introduces the basics of DV
and CV quantum systems and operations.
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Fig. 1. Schematic of time- and frequency-domain analog and digital signals.
Conversions between them are accomplished via the Fourier transform and
sampling/interpolation.

A. Overview of classical signal processing data types

We begin by summarizing classical signal types in Fig. 1,
including the relationships between them. In classical systems,
a signal is a physical quantity that is a real-valued continuous
function of time, such as electric current or voltage, although
complex representations can be used to ease mathematical
description. These analog signals can be converted to the
frequency domain by the continuous Fourier transform (upper
panel of Fig. 1), and processed with analog filters. To im-
prove the robustness of signal processing, continuous signals
are often “quantized”2 into discrete signals via sampling, or
equivalently analog-digital (A/D) conversion. In this context, a
discrete signal may be transformed to frequency domain by the
discrete Fourier transform (lower panel of Fig. 1). Inversely,
discrete signals can also be converted into continuous signals
via interpolation, or digital-analog (D/A) conversion. In addi-
tion to being continuous or discrete, signals can also be peri-
odic or aperiodic, and often require correspondingly different
treatments. To accommodate these differences, windowing and
padding techniques are used to connect signal processing tasks
between signals of different periodicity.

Depending on whether the time-domain signal is periodic or
aperiodic, and continuous or discrete, there are four possible
signal types. Similarly, the corresponding frequency domain
signals also have four types. As a result, there are sixteen
possible transformations that connect time-domain signals to
their frequency domain counterparts. These transformations
are often named according to the characteristics of the signals
they transform between. For example, the continuous Fourier
transform connects a continuous aperiodic signal in the time
domain to a frequency-domain signal that is also continuous
and aperiodic. Likewise, padding/windowing techniques and
sampling/interpolation transform a continuous aperiodic signal
in the time domain to its discrete periodic counterpart in the
frequency domain. Similarly, a discrete Fourier series connects
discrete periodic signals in time and frequency domain. Other
transformations can be likewise defined to connect any pair
of time- and frequency-domain signals. See Refs. [1], [2] for
more details.

Beyond processing analog and digital signals on classical
computers, recent developments in quantum computing and

2Despite the name, this has no relation to quantum mechanics.

engineering raise the question: can mixed analog-digital signal
processing be achieved on quantum systems? And if so, how
can one define notions of quantum sampling and interpolation
to bridge analog and digital quantum data, and how can we
use these methods to implement algorithms like the Fourier
transform? Addressing these questions is crucial but challeng-
ing due to the fundamental differences between quantum and
classical systems. As we will see later in this paper, we obtain
affirmative answers to these questions, yet their resolution
requires a strong understanding of discrete and continuous
variable quantum systems, to which we now turn.

B. Review of DV and CV Quantum Systems and Operations

Here we review the basics of discrete-variable (Sec. II-B1)
and continuous-variable (Sec. II-B2) quantum systems, includ-
ing the quantum gates operations achievable on these systems.

1) Quantum States and Operations on Qubits: A qubit is a
two-level quantum system whose state can be represented as
a linear combination of two orthonormal basis states, denoted
by |0⟩ and |1⟩. That is, an arbitrary state can be written as
|ψ⟩ = c0 |0⟩ + c1 |1⟩, for c0, c1 ∈ C, where it is normalized
as |c0|2 + |c1|2 = 1. Conventionally, we write |0⟩ = [1, 0]T ,
|1⟩ = [0, 1]T , and |ψ⟩ = [c0, c1]

T .
To transform a one qubit state |ψ⟩ to another |ψ′⟩, we

require a single-qubit gate, denoted Rb̂(θ), such that |ψ′⟩ =
Rb̂(θ) |ψ⟩. In general, Rb̂(θ) can be an arbitrary 2× 2 special
unitary matrix (SU(2)), which is generated by a set of 2 × 2
Hermitian matrices known as the Pauli matrices:

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
(1)

as

Rb̂(θ) = e−i
θ
2 b̂·σ, (2)

where i =
√
−1, and σ = [σx, σy, σz] is a vector of the Pauli

matrices, θ ∈ [0, 4π) is a rotation angle, and b̂ = [bx, by, bz] ∈
R3 is a vector of unit length, |bx|2 + |by|2 + |bz|2 = 1.
In general, θ and b̂ can be chosen from a continuum of
possibilities to realize an arbitrary single-qubit gate.

To apply quantum computation to multiple qubits, additional
gates that entangle qubits are needed. One common such gate
is the controlled-NOT (CNOT) operation, which acts on two
qubits as CNOT = I+σz

2 ⊗ I + I−σz

2 ⊗ σx where I is the
2 × 2 identity matrix, and ⊗ is the tensor product. It can be
shown [17] that the gate set S0 = {Rb̂(θ),CNOT} forms a
universal gate set, such that an arbitrary gate on n qubits (i.e.,
a 2n × 2n unitary matrix) can be decomposed into a product
of Rb̂(θ) and CNOT gates.

Despite its universality, the set S0 contains infinitely many
gates due to the continuous parameterization of Rb̂(θ). It turns
out an arbitrary gate Rb̂(θ) can be decomposed into a finite
sequence of gates from the discrete set {H,T}, where

H =
1√
2

[
1 1
1 −1

]
, T =

[
1 0
0 ei

π
4

]
(3)

are the Hadamard gate and T gate, respectively. This implies
that the set S1 = {H,T,CNOT} is a universal gate set
for qubit-based quantum computation [68]. According to the
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Solovay-Kitaev theorem, constructing an ϵ-approximation to
arbitrary gate Rb̂(θ) requires O(logc( 1ϵ )) H or T gates, where
c is a constant close to 2 [69], [70]. As a byproduct of
this result, synthesizing an arbitrary n-qubit unitary requires
O(4n logc( 1ϵ )) gates from the set S1 [69].

2) Quantum States and Operations on Oscillators: In con-
trast to qubits, the computational capabilities of continuous
variable quantum systems are less well-studied (for an in-
troduction see [61]). Here we will consider the paradigmatic
continuous variable system — the quantum harmonic oscilla-
tor. The quantum harmonic oscillator arises in any quantum
system that exhibits oscillations, such as molecular vibrations
[71], microwave photons in cavities [72], and phonons in solids
[73], [74]. Its Hamiltonian is given by the quantized version
of the familiar classical harmonic oscillator

H0 =
p2

2m
+

1

2
mω2

0x
2, (4)

where p and x are the momentum and position, and m and ω0

are the mass and frequency of the oscillator. Mathematically,
the quantization of the harmonic oscillator is achieved by
introducing momentum and position operators p̂ and x̂ that
obey the canonical commutation relation [x̂, p̂] := x̂p̂−p̂x̂ = i.
Setting ℏ = 1 and mω0 = 1 for simplicity, these operators can
be conveniently expressed in terms of the annihilation and
creation operators, a, a†, respectively, defined as

p̂ =
i(a† − a)√

2
, x̂ =

a+ a†√
2
, (5)

and obeying [a, a†] = 1.

After quantization, the Hamiltonian of the quantum har-
monic oscillator is given by Ĥ0 = ω0(n̂+

1
2 ) where n̂ := a†a

is known as the number operator. The number operator has
non-negative integer eigenvalues n ∈ Z+

0 , which correspond
to number of excitations in the oscillator. Incidentally, the
corresponding eigenstates, which we denote by |n⟩, are also
the eigenstates of the Hamiltonian

Ĥ0 |n⟩ = En |n⟩ , (6)

with eigenvalues (i.e., energy) En = ω0(n + 1
2 ) for n =

0, 1, 2, . . .. Similar to the qubit case, an arbitrary oscillator
state can be written as a linear combination of |n⟩ as |ψ⟩ =∑∞
n=0 cn |n⟩ for cn ∈ C and

∑∞
n=0 |cn|2 = 1. Adjacent

eigenstates are related to each other by a, a† as:

a† |n⟩ =
√
n+ 1 |n+ 1⟩ , (7)

a |n⟩ =
√
n |n− 1⟩ . (8)

In the language of linear algebra, |n⟩ can be represented by
a (infinite-dimensional) column vector with its n-th entry set
to 1 and the rest to 0; for example, |0⟩ =

[
1 0 0 · · ·

]T
,

|1⟩ =
[
0 1 0 · · ·

]T
, and |2⟩ =

[
0 0 1 0 · · ·

]T
. In

this basis, Eqs. (7) and (8) lend themselves to the following

matrix representation for p̂, x̂:

p̂ =
i√
2


0 −1 0 0 · · ·
1 0 −

√
2 0 · · ·

0
√
2 0 −

√
3 · · ·

0 0
√
3 0 · · ·

...
...

...
...

. . .

 , (9)

x̂ =
1√
2


0 1 0 0 · · ·
1 0

√
2 0 · · ·

0
√
2 0

√
3 · · ·

0 0
√
3 0 · · ·

...
...

...
...

. . .

 . (10)

Just as the Pauli matrices generate an arbitrary single-qubit
operation as per Eq. (2), an arbitrary unitary operation on an
oscillator can be represented as

U = e−ih(x̂,p̂), (11)

where h(x̂, p̂) is a function of x̂, p̂, often expressed as a
polynomial in x̂ and p̂. Universal control of an oscillator
requires the ability to implement the above unitary for any such
h(x̂, p̂) of finite degree. In a similar manner, an entangling gate
between two oscillators can be defined to achieve universal
quantum computation on multiple oscillators.

However, despite the parallel discussion of Eq. (2) and
Eq. (11), qubit gates and oscillator gates differ significantly.
For example, in the qubit case, any even power of a Pauli
matrix is the identity (e.g., σ2

x = 1), whereas in the oscillator
case powers of x̂, p̂ are non-trivial. This distinction arises from
the infinite dimensionality of the oscillator, and complicates
the construction of unitary operations on CV systems.

Nonetheless, a simple example of such a unitary operator
on a CV system is the free-evolution of an oscillator, given by

R(θ) = e−iθa
†a, (12)

where θ = ω0t is a rotation angle. When θ = π
2 , this becomes

the “Fourier gate” F = R(π2 ), which acts as

F †x̂F = p̂, F †p̂F = −x̂. (13)

Evidently, the Fourier gate swaps the position x̂ with the
momentum operator p̂, thus enacting a continuous Fourier
transform on the underlying wave function.

Lastly, we note that in practical/numerical studies of CV
systems, the infinite-dimensional Hilbert space can be trun-
cated to a finite dimension by selecting a large integer Nmax

to represent the maximum excitation number. Truncating the
states and operations past this cutoff renders the system finite
dimensional, effectively mapping the oscillator into an Nmax-
dimensional qudit. In this setting, it has been established how
to perform universal qudit-based quantum computation using
oscillators [59], [60], yet an analogue of the Solovay-Kitaev
theorem for oscillators has not been established [75].
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III. MIXED ANALOG-DIGITAL QUANTUM SIGNAL
PROCESSING

Leveraging the gates and operations defined in the previ-
ous section, here we present analog-digital quantum signal
processing for hybrid CV-DV systems. We first discuss hybrid
single-variable QSP in Sec. III-A, followed by a generalization
to bi-variate non-Abelian QSP in Sec. III-B.

A. Hybrid Single-variable QSP

After analyzing the states and gates of qubits and oscillators,
a natural question is how to compose these gates into useful
quantum computations. This has been well-studied in DV
quantum computation, leading to a variety of qubit-based
algorithms, such as Trotter formulas [76], linear combination
of unitaries [77], variational algorithms [78], and quantum
signal processing [26]. Many of these DV algorithms admit
adaptations to hybrid CV-DV quantum processors, as expli-
cated in Refs. [57], [61]. As the focus of our work is signal
processing, let us present CV-DV QSP [44], as an adaptation
of QSP to hybrid CV-DV processors.

As we review in Appendix A, QSP provides a systematic
framework for implementing a polynomial transformation of
a linear operator, that is encoded in a block of a matrix
(e.g., as one of its matrix elements). This is achieved by
designing an alternating sequence of a fixed z-rotation that
encodes the operator (i.e. the “signal”), and parameterizable x-
rotations. Such a QSP sequence of length d generates a degree
d polynomial, parameterized by the angles of the x-rotations.
Importantly, for any polynomial bounded as |P (x)| ≤ 1 over
−1 ≤ x ≤ 1, we can efficiently compute the corresponding
angles with a classical algorithm [35], [38], [79], [80]. In
fact, an early such method for determining these angles relied
on Remez-type exchange algorithms [81], ubiquitous in filter
design in classical signal processing, thus inspiring the name
“quantum signal processing” [22].

In generalizing QSP to hybrid CV-DV systems, let us define
an important oscillator gate, the displacement gate D(α):

D(α) = eαa
†−α∗a = ei

√
2 Im{α}x̂−i

√
2Re{α}p̂ (14)

where α ∈ C is a complex number. As its name suggests,
D(α) displaces the oscillator quadrature operators— x̂ by the
real component of α, and p̂ by the imaginary component:

D†(α) x̂D(α) = x̂+
√
2Re{α}, (15)

D†(α) p̂ D(α) = p̂+
√
2 Im{α}. (16)

The displacement gate itself is considered a “Gaussian” op-
eration, meaning that it only manipulates the oscillator wave
function classically and cannot generate non-classical states.
However, by coupling an oscillator to a qubit, the following
entangling gate, known as the conditional displacement oper-
ation, can be generated:

W (κ)
z = e−i

κ
2 x̂σz =

[
ŵ 0
0 ŵ−1

]
, ŵ = e−i

κ
2 x̂. (17)

where κ ∈ R is a real-valued displacement parameter. This is a
powerful operation that imparts a qubit-dependent momentum

boost on the oscillator and can indeed generate quantum
entanglement between qubits and oscillators [55]. The gate
in Eq.(17) is also a standard gate on trapped ion quantum
computers [82]. Importantly, we can equivalently interpret this
as a z-rotation of the qubit through an angle κx̂ proportional
to the position of the oscillator. Likewise, Eq. (17) indicates
that W (κ)

z encodes the variable ŵ in its upper left block (of the
2× 2 qubit subspace). This identification suggests that W (κ)

z

could be combined with parameterizable x̂-rotations to develop
a QSP sequence that generates a polynomial transformation of
ŵ.

Following this intuition, we propose the following hybrid
single-variable QSP sequence of d operations to produce a
polynomial transformation in ŵ:

eiϕ0σx

d∏
j=1

W (κ)
z eiϕjσx =

[
F (ŵ) iG(ŵ)

iG(ŵ−1) F (ŵ−1)

]
. (18)

As we show in Appendix A, F (ŵ) and G(ŵ) are degree d
Laurent polynomials in ŵ, ŵ−1 with real coefficients and par-
ity d mod 2 (i.e., consisting of only even or odd coefficients):

F (ŵ) =

d∑
n=−d

fnŵ
n =

d∑
n=−d

fne
−inκ

2 x̂ := f(x̂), (19)

G(ŵ) =

d∑
n=−d

gnŵ
n =

d∑
n=−d

gne
−inκ

2 x̂ := g(x̂) (20)

where fn, gn ∈ R. Evidently, F (ŵ) and G(ŵ) equate to
periodic functions f(x̂) and g(x̂), both with periods of 4π

κ
in position space. The coefficients fn, gn can be computed by
evaluating the Fourier series coefficients of f(x) and g(x) for
−d ≤ n ≤ d:

fn =

d∑
n=−d

f(x)ei
nκ
2 x, gn =

d∑
n=−d

g(x)ei
nκ
2 x. (21)

In addition, the unitarity of Eq. (18) requires F (ŵ)F (ŵ−1)+
G(ŵ)G(ŵ−1) = I .

Note that even though κx̂ is a quantum operator rather
than a classical rotation angle, this construction is identical
to ordinary QSP as we discuss in Appendix A, and thus the
associated results carry over. Crucially, for any real Laurent
polynomial F (ŵ) of degree d written in the form of Eq. (20),
there exists a set of phases {ϕ0, ϕ1, ..., ϕd} such that the gate
sequence of Eq. (18) produces F (w), and we can determine
these phases.

Moreover, the construction in Eq. (18) can be changed to
be a function of momentum p̂ by instead using the following
qubit-dependent position kick in place of W (κ)

z (θ̂):

W (λ)
z = e−i

λ
2 p̂σz =

[
v̂ 0
0 v̂−1

]
, v̂ = e−i

λ
2 p̂. (22)

More generally, to construct an operator that is a function
of a linear combination of x̂ and p̂, such as κ

2 x̂ + λ
2 p̂, one

can apply QSP to the operator e−i(
κ
2 x̂+

λ
2 p̂)σz . By varying the

parameters κ and λ, it is therefore possible to cover the entire
phase space. As such, this simple generalization of QSP to
hybrid CV-DV systems allows us to implement a large class
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of operations on oscillators, with precision that improves with
increasing polynomial degree d. This is useful in variety of
applications; for example, Ref. [44] uses this construction to
design an interferometer for quantum sensing applications in
the few-shot limit, and Ref. [61] demonstrates how to use this
technique to create a cat state in the oscillator by applying a
conditional displacement followed by a QSP sequence.

B. Hybrid Non-Abelian QSP

The hybrid single-variable QSP of the previous section
is limited in application to functions of either x̂, p̂, or a
linear combination thereof. Here we extend this constructing
to multivariate functions in x̂ and p̂ by presenting hybrid non-
Abelian QSP [83]. In a system comprised of one qubit and
one oscillator, we define non-Abelian QSP by the following
sequence of the two conditional displacements Eqs. (17)
and (22), interspersed with X rotations parameterized by a
set of phases {ϕ(k)j , ϕ

(λ)
j } for j = 1, 2, · · · , d:

Ud = eiϕ0σx

d∏
j=1

W (k)
z eiϕ

(k)
j σxW (λ)

z eiϕ
(λ)
j σx

=

[
Fd(w, v) iGd(w, v)

iGd(v
−1, w−1) Fd(v

−1, w−1)

]
. (23)

As we show in Appendix B, this sequence implements a bivari-
ate Laurent polynomial transformation in the non-commuting
variables ŵ and v̂, which takes the following form:

Fd(ŵ, v̂) =

d∑
r,s=−d

frsŵ
rv̂s, Gd(ŵ, v̂) =

d∑
r,s=−d

grsŵ
rv̂s,

(24)

where frs and grs are complex coefficients parameterized by
the phase angles {ϕ(k)j , ϕ

(λ)
j }. Note that because ŵ and v̂ do

not commute, their order in Eq. (24) matters. Here we will
express these polynomials with the factors of ŵ always written
to the left of v̂, and refer to this convention as canonical.

In using this construction, it would be desirable to show that
for an arbitrary Laurent polynomial Fd(ŵ, v̂), there always
exist corresponding QSP phases {ϕ(k)j , ϕ

(λ)
j }. However, the

bi-variate nature of non-Abelian QSP renders the (single-
variable) QSP theorem of Ref. [84] inapplicable. Similarly,
the non-commutativity of ŵ and v̂ inhibits application of
the recent developments in multivariate QSP of commuting
variables [27], [28], [85]. Accordingly, a characterization of
the transformations achievable by non-Abelian QSP requires
a more complete theory of polynomial transformations of two
non-commuting variables, which has yet to be developed [30].

IV. QUANTUM AD/DA CONVERSION: SAMPLING AND
INTERPOLATION OF QUANTUM DATA

In this section, we present two methods for AD/DA conver-
sion of quantum signals on hybrid CV-DV systems. Analogous
to classical signal processing, this procedure effectively real-
izes sampling and interpolation of quantum data. Physically,
sampling transfers a CV state to a DV state, whereas inter-
polation transfers a DV state to a CV state. We will refer to

these procedures as quantum A/D (analog-to-digital) and D/A
(digital-to-analog) conversion, respectively. In the following,
we will use subscripts Q and O to distinguish DV states
(qubits) and CV states (oscillator), respectively.

Formally, in quantum D/A conversion, we begin with an n-
qubit state |ψ⟩Q =

∑
x cx|x⟩Q, where x = (x1, x2, ..., xn)

is a Boolean-valued vector and |x⟩Q = |x1⟩|x2⟩...|xn⟩ is
the corresponding qubit state. We will also use the binary
representation of integers, in which x corresponds to the
integer x =

∑n
j=1 xj ·2n−j = x1 ·2n−1+x2 ·2n−2...+xn ·20.

Our goal is to transfer |ψ⟩Q to an analogous oscillator state
|ψ⟩O =

∑
x cx|x,∆⟩O, where |x,∆⟩O is a basis state in

continuous space parameterized by the integer x and a spacing
parameter ∆. Intuitively, |x,∆⟩O can be viewed as a state
localized around the position q = x∆, such that adjacent
basis states (i.e., |x ± 1,∆⟩O) are separated by ∆; the exact
form of the basis states depends on the AD/DA conversion
implementation, as discussed below.

Ultimately, we wish to construct an n-qubit quantum D/A
conversion unitary UD/A(∆, n), that obeys

UD/A(∆, n)|ψ⟩Q|0,∆⟩O = |0⟩Q|ψ⟩O, (25)

where |0,∆⟩O is the initial oscillator state, and 0 is a vector
of all 0’s. Crucially, the initial and final states must be
unentangled to ensure that the information content of the
qubits state is fully transferred to the oscillator. Any residual
entanglement would indicate that information remains in the
quantum correlations between the systems, inaccessible to
either party individually. As this conversion operation is uni-
tary, its inverse furnishes an n-qubit quantum A/D conversion
unitary:

UD/A(∆, n)
†|0⟩Q|ψ⟩O = |ψ⟩Q|0,∆⟩O. (26)

Below, we will present two methods to realize quantum
AD/DA conversion. The first protocol uses hybrid single-
variable QSP; the second protocol is an adaptation of the state
transfer protocol of Ref. [66], which we show is an instance
of non-Abelian QSP. For both protocols, we prove analytical
bounds on their performance and resource requirements.

A. Quantum AD/DA Conversion: Hybrid Single-Variable QSP

Our first quantum AD/DA conversion protocol employs
hybrid single-variable QSP. For this protocol, it would be ideal
for the oscillator basis states |x,∆⟩O to be position eigenstates
|q⟩O, with eigenvalues q = x∆ at integer multiples of the
spacing parameter. Realistically however, an exact position
eigenstate is un-normaliazable and cannot be prepared, so we
instead take our basis states to be Gaussians of width σ ≪ ∆
centered around x∆:

|x,∆⟩Gaus
O :=

1√
σ(2π)1/4

∫
dqe−(q−x∆)2/4σ2

|q⟩O, (27)

which reduces to a position eigenstate as σ → 0. These states
are nearly orthonormal for small σ/∆:

Gaus
O ⟨y,∆|x,∆⟩Gaus

O = e−
∆2

σ2
(x−y)2

8 , (28)

which approaches the Kronecker delta δx,y as σ/∆→ 0.
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D/A Conversion Protocol: We first focus on the D/A
conversion protocol, as the corresponding A/D protocol is
simply its inverse. The D/A protocol consists of two stages:
first, a series of conditional displacements are applied between
the qubits and oscillator, and then the intermediate state is
disentangled by a series of hybrid single-variable QSP opera-
tions. We will denote the resulting D/A conversion unitary by
US-V

D/A(∆, n), using “S-V” for single-variable QSP.
Stage 1 – Displacement: First, we apply a series of con-

trolled displacements to the oscillator:
∏n
j=1Dj(∆2n−j),

where Dj(∆2n−j) is a displacement (as in Eq. (14)), con-
trolled by the jth qubit. This transforms the initial state as

|ψ⟩Q|0,∆⟩Gaus
O =

∑
x

cx|x⟩Q|0,∆⟩Gaus
O

7→
∑
x

cx|x⟩Q|x,∆⟩Gaus
O .

(29)

We could imagine disentangling this state as∑
x

cx|x⟩Q|x,∆⟩Gaus
O 7→

∑
x

cx|0⟩Q|x,∆⟩Gaus
O = |0⟩Q|ψ⟩Gaus

O ,

(30)
to achieve the desired D/A conversion, where |ψ⟩Gaus

O is the
transferred wave function encoded in the basis of Gaussian
states. We realize this disentangling procedure with hybrid
single-variable QSP as follows.

Stage 2 – QSP: In the QSP stage, we disentangle the
qubits and oscillator by enacting an operation that sets each
qubit to |0⟩ as in Eq. (30). This operation would act as
|xj⟩|x,∆⟩Gaus

O 7→ |0⟩|x,∆⟩Gaus
O for each qubit j, or equiv-

alently flip qubit j conditioned on the bit xj . Here we
implement this operation as a series of hybrid single-variable
QSP sequences, one for each qubit.

This desired behavior requires that we determine the bits
{xj} from the oscillator’s binary representation |x,∆⟩Gaus

O .
Observe that the bit xj of the position x∆ = ∆

∑n
j=1 2

n−jxj
can be read out by a “square wave” function:

Sj(x̂) := Θ
(
cos
[

π
2n−j

(
x̂
∆ − 2n−j−1 + 1

2

)])
= 1−xj , (31)

where Θ(·) is the Heaviside step function. For visual intuition,
we depict this function in Fig. 2, illustrating how such a square
wave function outputs the bits xj .

We may then use this observation to construct the unitary

Rj(x̂) : =

(
Sj(x̂)

√
1− Sj(x̂)2

−
√

1− Sj(x̂)2 Sj(x̂)

)
=

{
I xj = 0

iσy xj = 1,
(32)

where x̂ denotes the position operator. This operation correctly
flips the jth qubit conditioned on xj : Rj(x̂)|xj⟩|x,∆⟩Gaus

O =
|0⟩|x,∆⟩Gaus

O .3 Therefore, the sequence
∏n
j=1Rj(x̂) correctly

disentangles all n qubits.
Our strategy is to approximate each Rj(x̂) as a hy-

brid single-variable QSP sequence. In particular, for the
jth sequence, we will choose our variable to be ŵj =

3Here we take |x,∆⟩Gaus
O to be an exact position eigenstate; we will remedy

this assumption and evaluate performance on |x,∆⟩Gaus
O shortly.

Fig. 2. The square wave functions Sj(x∆) of Eq. (31) for j = 1, 2, 3, with
n = 3 and ∆ = 1. Observe how at integer values x, these square waves are
equal to 1− xj , which enables one to read out the bits {xj}.

e
π

2n−j (x̂/∆−2n−j−1+1/2). We can then employ hybrid single-
variable QSP to implement a real-valued Laurent polynomial
that approximates the step function as F (ŵj) ≈ Sj(x̂),
corresponding to the operation (see Eq. (18)):(

F (ŵj) i
√
1− F (ŵj)2

i
√
1− F (ŵj)2 F (ŵj)

)
. (33)

This follows from choosing F (ŵj) to be real, as F (ŵj) =
F (ŵ−1

j ) ∈ R. Upon conjugation by a phase gate S, this
operation becomes(

F (ŵj)
√

1− F (ŵj)2
−
√

1− F (ŵj)2 F (ŵj)

)
=: R̃j(x̂), (34)

which approximates R̃j(x̂) ≈ Rj(x̂) because F (ŵj) ≈
Sj(x̂), where the accuracy in this approximation is dictated
by the polynomial approximation. The accuracy and cost
of such an approximation is established in the literature: a
QSP polynomial can approximate the step function to within
some error ϵ, except within a region of width δ centered
around the discontinuity, and the degree of this polynomial is
O
(
1
δ log

(
1
ϵ

))
[39], [41]. In aggregate then, by applying the

series of QSP sequences
∏n
j=1 R̃j(x̂) to intermediate state

of Eq. (29), we disentangle the qubits and oscillator, and
(approximately) produce the desired final state |0⟩Q|ψ⟩O.

A/D Conversion Protocol: Because the D/A conversion
protocol is unitary, its inverse furnishes an analogous quantum
A/D conversion protocol. In this direction, take the initial state
to be |0⟩Q|ψ⟩Gaus

O = |0⟩Q
∑
x cx|x,∆⟩Gaus

O . Then, by applying
the inverted sequence

∏1
j=n W̃j(x̂)

†, and subsequently the
inverted controlled displacements

∏1
j=nDj(−∆2n−j), one

obtains the transferred state |ψ⟩Q|0,∆⟩Gaus
O .

Performance: We illustrate the circuit of the D/A conver-
sion protocol in Fig. 3, showcasing its decomposition into
controlled displacements and QSP operations. For intuition,
we also depict in Fig. 4a the Wigner function (e.g. a phase
space quasiprobability distribution; see Ref. [61] for a detailed
definition) of the oscillator upon D/A conversion for various
initial 3-qubit states. Let us now analyze the gate complexity
and error of this protocol.
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Fig. 3. The quantum circuit that implements D/A conversion with single
variable QSP. In this circuit, each thin lines denote a qubit, and the thick
line an oscillator. Time proceeds left to right, enacting the gates depicted
as boxes. The initial qubits state is |ψ⟩Q, and the initial oscillator state
is |0,∆⟩Gaus

O . The first stage applies a series of controlled displacements
D(2n−j∆) between the qubits and oscillator. The second stage applies a
series of operations that disentangle the qubits by flipping qubit j conditioned
on the bit xj of the oscillator’s position. We depict these operations as an
X := σx gate conditioned on xj . In practice, each of these is realized as a
QSP sequence Rj(x̂) according to the construction of Eq. (32).

The first stage requires n displacement gates of sizes ∆2n−j

for j = 1, ..., n. This translates to a total displacement amount
n∑
j=1

∆2n−j = O(∆2n), (35)

and thus a time complexity O(∆2n). This scales as 2n when
the controlled displacements are implemented with a fixed
coupling between the qubits and oscillator, yet can be reduced
if sufficient squeezing is available on the quantum device (e.g.
by selecting ∆ = O(2−n)).

In the second stage, we take the polynomial implemented
by the jth QSP sequence to be an approximation to the step
function that suffers error at most ϵ outside of a region of width
δj centered about the discontinuity. Each such QSP sequence
requires O( 1

δj
log(1/ϵ)) gates [26], [40]. To ensure that the jth

QSP sequence can discern the correct bit xj when acting on
a state located at position q = x∆, we require that the width
of the approximate step function be δj ≤ O( 1

2n−j ). Therefore,
the total gate complexity of all the QSP sequences is

O
(∑

j
1
δj

log(1/ϵ)
)
= O(2n log(1/ϵ)). (36)

As the gates comprising the QSP sequences (i.e. rotations)
take time O(1), this corresponds to a time complexity
O(2n log(1/ϵ)).

The total time complexity of this D/A conversion is thus

TD/A = O (2n (∆ + log(1/ϵ))) . (37)

Again, for constant ∆, this scales linearly in the dimension
of the DV Hilbert space; this is expected as we are directly
encoding the initial state in 2n basis states equally spaced in
position space. In principle, one could more efficiently encode
this information via a binary encoding on multiple oscillators.

Lastly, to analyze the fidelity of this D/A conversion, note
its two sources of error: first, the basis states are not exact
position eigenstates but rather Gaussians of finite width σ; and
second, the QSP polynomial is only an accurate approximation
to within error ϵ, and fails near the discontinuity of the
step function. A careful analysis of these errors, presented
in Appendix C, indicates that the fidelity between the output

state of this protocol and the desired state |0⟩Q |ψ⟩
Gaus
O is

1−O(nϵ)− e−O(∆2/σ2). (38)

Note that this depends on the ratio σ/∆, and consequently,
the degree to which the basis states are orthogonal. Therefore,
one can improve fidelity by either squeezing the initial state
to decrease σ, or selecting a larger spacing ∆. In particular, to
achieve a fidelity at least 1−ε, it suffices to select ϵ = O(ε/n)
and (∆/σ)2 = O(log(1/ε)), which translates to an overall
time complexity

TD/A = O
(
2n
(
σ
√
log(1/ε) + log(n/ε)

))
. (39)

Lastly, recall that the inverse of this protocol provides a
quantum A/D conversion protocol. Because the inverse is just
the time-reversed operation, its gate and time complexities
are the same as that of D/A conversion, as is the asymptotic
expression for the fidelity.

Collectively, the results of these AD/DA conversion proto-
cols can be summarized as follows:

Theorem 1 (Quantum AD/DA Conversion with Hybrid Single
Variable QSP). The quantum D/A conversion protocol based
on hybrid single-variable QSP achieves a fidelity 1−O(nϵ)−
e−O(∆2/σ2)

)
, at a gate complexity of O(2n log(1/ϵ)) and time

complexity O(2n(∆ + log(1/ϵ))), where n is the number of
qubits of the DV state, ϵ is the error on the the polynomial
realized by QSP, σ is the width of the initial Gaussian wave
function of the oscillator, and ∆ is a spacing parameter.

Analogously, in reverse this furnishes a quantum A/D
conversion protocol that achieves a fidelity 1 − O(nϵ) −
e−O(∆2/σ2) and identical gate and time complexities.

B. Quantum AD/DA Conversion: Hybrid Non-Abelian QSP
Recently, Ref. [89] proposed a method to transfer a CV

state to an n-qubit state by enacting a series of controlled
displacements between the oscillator and each qubit. This
naturally defines an A/D conversion protocol, which in reverse
furnishes a D/A conversion protocol. Below, we review these
protocols and provide bounds on their performance. We also
show how these protocols can be viewed as instances of hybrid
non-Abelian QSP, and thus we will refer to them accordingly.

A/D Conversion Protocol: To begin, let us denote the A/D
conversion unitary of Ref. [89] by UN-A

D/A (∆, n)†, using “N-A”
for non-Abelian. We define this by its Hermitian conjugate
such that its inverse UN-A

D/A (∆, n) performs D/A conversion,
in line with our notation of Eq. (25). This operation uses a
spacing parameter ∆ and transfers a CV state to n qubits.

The initial state of this protocol is |0⟩Q|ψ⟩O, where |ψ⟩O =∫
dq ψ(q)dq|q⟩O is a state on the oscillator to be transferred to

the n qubits. Explicitly, UN-A
D/A (∆, n)† is the unitary operation

UN-A
D/A (∆, n)† =

1∏
j=n

WjVj =WnVn · · ·W1V1, (40)

where

Vj = ei
π

2j∆
x̂σ̂(j)

y , Wj =

{
ei

∆
2 2j−1p̂σ̂(j)

x j < n,

e−i
∆
2 2j−1p̂σ̂(j)

x j = n,
(41)
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(a)

(b)

Fig. 4. D/A conversion for various three-qubit states using single-variable
QSP (a) and non-Abelian QSP (b), including |GHZ⟩ = (|000⟩+ |111⟩)/

√
2

and |W⟩ = (|001⟩+ |010⟩+ |100⟩)/
√
3. (a): We use a single-variable QSP

sequence of degree d = 60 with δ = 0.2, ∆ = 1, and σ = e−1.12 ≈ 0.37.
As a metric for successful conversion, we estimate the purity (a measure of the
degree to which the oscillator and qubits have been successfully disentangled)
of the final oscillator state, yielding 0.976, 0.958, and 0.982, respectively. All
simulations were carried out in Bosonic Qiskit [86], [87]. (b): We use non-
Abelian QSP with ∆ =

√
2 and approximate the initial oscillator sinc state

(defined in Eq. (48)) by a Gaussian with σ = e−1.12 ≈ 0.37. The purities
of the final oscillator state evaluate to 0.858, 0.858, and 0.858, respectively.
We used QuTiP [88] for the simulation with a Fock-level truncation of 128
for the oscillator.

are momentum boosts and displacements of the oscillator,
and the superscript (j) denotes action on the jth qubit (e.g.
σ
(j)
x acts on qubit j). As shown in Ref. [89], application of
UN-A

D/A (∆, n)† to the initial state outputs the state∑
s∈{−1,+1}n

∫
dq ψ(q + qs)

n∏
j=1

cos
(
πq
∆2j

)
|ϕs⟩Q|q⟩O, (42)

where the sum runs over all s ∈ {−1,+1}n, and the basis
states are

|ϕs⟩ = (−1)γs ·
n⊗
j=1

[
1√
2

(
|0⟩+ sj |1⟩

)]
, (43)

for a scalar γs defined as

γs =

n−2∑
j=1

1

2
(sj + sj+1) +

1

2
(sn−1 − sn). (44)

For instance, if s = (1,−1, 1,−1), then γs = 1, and |ϕs⟩ =
(−1) · |+⟩|−⟩|+⟩|−⟩. In addition, the value qs in Eq. (42) is

qs =
∆

2

(
n−1∑
j=1

sj2
j−1 − sn2n−1

)
. (45)

This quantity takes 2n discrete values in the range [−∆
2 (2

n−
1), ∆2 (2

n−1)], with each possible value equally spaced by ∆.

Two approximations are used in Ref. [89] to simplify the
state of Eq. (42). First, it is assumed that the support of ψ(q)
is limited to |q| ≤ ∆

2 (2
n − 1), such that one can make the

replacement
∏n
j=1 cos

(
πq
∆2j

)
≈ sinc(πq∆ ) over the support of

the wave function. Second, it is also assumed that
∫
dq ψ(q+

qs)sinc(πq∆ ) ≈ ψ(qs)
∫
dq sinc(πq∆ ), which dictates that ψ(q)

be slowly varying relative to sinc(πq∆ ), i.e., |dψdq | ≪ 1/∆. With
both of these approximations made, Eq. (42) simplifies to∑

s

√
∆ψ(qs)|ϕs⟩Q ⊗

1√
∆

∫
dq sinc(πq∆ )|q⟩O. (46)

Notably, the oscillator is now decoupled from the qubits, and
therefore the initial CV state ψ(q) has been transferred to a
corresponding qubits state

∑
s

√
∆ψ(qs)|ϕs⟩Q, encoded in the

{|ϕs⟩Q} basis.

D/A Conversion Protocol: This A/D conversion proto-
col can be run in reverse to achieve D/A conversion. In
this direction, one first prepares the qubits in the state∑

s cs|ϕs⟩, and the oscillator in the sinc state |0,∆⟩sinc
O =

1√
∆

∫
dq sinc(πq∆ )|q⟩O.4 Then, enacting UN-A

D/A (∆, n) =∏n
j=1 V

†
j W

†
j (approximately) outputs the state

|0⟩Q ⊗
∑
s

cs
1√
∆

∫
dq sinc

(
π(q−qs)

∆

)
|q⟩O = |0⟩Q|ψ⟩sinc

O .

(47)
This has transferred the initial DV state to a CV state encoded
in the basis of displaced “sinc states”:

|qs,∆⟩sinc
O :=

1√
∆

∫
dq sinc

(
π(q−qs)

∆

)
|q⟩O. (48)

A sinc state is a state in continuous space peaked around
q = qs, with adjacent sinc state peaks separated by ∆, such
they are orthonormal: sinc

O ⟨qs,∆|qs′ ,∆⟩sinc
O = δss′ . Satisfyingly,

this representation of |ψ⟩sinc
O as a sum of displaced sinc func-

tions is analogous to the construction of Shannon’s sampling
theorem [90]. By this connection, this protocol can be viewed
as a quantum realization of Shannon’s sampling theorem.

Recontextualization as Non-Abelian QSP: This AD/DA
conversion protocol can be reinterpreted as an instance of non-
Abelian QSP. In the D/A direction, we rewrite the term V †

j W
†
j

in the language of non-Abelian QSP as

e−i
π
4 σ

(j)
y (V †

j W
†
j )e

iπ4 σ
(j)
y = e−i

π

∆2j
x̂σ̂(j)

y e∓i
∆
2 2j−1p̂σ̂(j)

z

=ei
π
4 σ

(j)
x e−i

π

∆2j
x̂σ̂(j)

z e−i
π
4 σ

(j)
x e∓i

∆
2 2j−1p̂σ̂(j)

z ,
(49)

where the − sign is taken for j < n, and the + sign for
j = n. By comparing this expression to the non-Abelian
QSP sequence of Eq. (23), it is readily identified that V †

j W
†
j ,

upon conjugation by e−i
π
4 σ

(j)
y , corresponds to a degree-1 non-

Abelian QSP sequence with the displacement amounts

k =
2π

∆2j
, λ = ∓∆2j

2
, (50)

4As explained in Ref. [89], this exact state is unphysical because it has
infinite energy, but it can be well approximated by a squeezed vacuum.
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Fig. 5. The circuit that implements D/A conversion with non-Abelian QSP,
adapted from Ref. [89] with the order of Wn and Vn flipped, which we believe
to be a typo in Fig. 1 of Ref. [89]. The initial qubits state is |ψ⟩Q, and the
initial oscillator state is a sinc state |0,∆⟩sinc

O = 1√
∆

∫
dq sinc(πq/∆)|q⟩O .

Then, one applies a series of operations V †
j W

†
j between the oscillator and the

jth qubit, where Vj = e
i π
2j∆

x̂σ̂
(j)
y and Wj = e±i∆

2
2j−1p̂σ̂

(j)
x . The systems

on which these operations act are denoted by circles with dashed lines. In
aggregate, this maps the initial qubits state to an equivalent oscillator state
|ψ⟩O encoded in a basis of displaced sinc states, as per Eq. (47).

for the jth qubit, and with QSP phases

ϕ0 =
π

4
, ϕ

(k)
1 = −π

4
, ϕ

(λ)
1 = 0 (51)

for all j qubits. In this incarnation, this AD/DA conversion
protocol may be interpreted as a product of n degree-1 non-
Abelian QSP sequences, where each sequence acts between
the oscillator and the jth qubit. This identification suggests that
this protocol could admit a generalization by using a higher
degree non-Abelian QSP sequences.

Performance: We illustrate the circuit of the D/A conver-
sion protocol in Fig. 5, showing the series of V †

j W
†
j operations

acting between the oscillator and qubits. We also illustrate in
Fig. 4b the Wigner function of the final oscillator state after
D/A conversion for various initial 3-qubit states. Let us next
analyze the gate complexity and performance of this protocol.

As per Eq. (40), this protocol requires n gates, which collec-
tively require a total displacement

∑n
j=1O(∆2j) = O(∆2n).

As in the previous AD/DA conversion protocol, this implies
an overall time complexity O(∆2n) when the displacements
are implemented with a fixed coupling between the qubits
and oscillator, although this can be reduced with a sufficiently
tunable and strong coupling.

Next, consider the fidelity of this protocol. Ref. [89] presents
numerical results on the fidelity achieved in the A/D direction.
For example, in transferring the harmonic oscillator eigenstate
|3⟩ onto n qubits, the protocol achieves infidelity ≈ 0.2 for
n = 4, and ≈ 9 · 10−4 for n = 10, indicating that the
performance improves drastically with increasing n. Achieving
this performance however requires that ∆ be carefully tuned
for each value of n to maximize the fidelity, yet no analytical
bounds on fidelity are provided in Ref. [89] to guide this
tuning. Here, we fill this gap by providing fidelity bounds
in both the D/A and A/D directions.

In the A/D direction, the exact output state of Eq. (42) is
approximately equal to the desired output state of Eq. (46). The
approximations used in reaching this desired state require that
ψ(q) have support limited to |q| ≤ ∆

2 (2
n − 1), and be slowly

varying as |dψdq | ≪ 1/∆. A careful analysis of this protocol,
presented in Appendix C, indicates that the fidelity between

these two states, and thus the fidelity of the A/D direction, is

1−O

(∫ −∆
2 (2n−1)

−∞
dq|ψ(q)|2 +

∫ ∞

∆
2 (2n−1)

dq|ψ(q)|2
)

−O

(
∆

∫ ∆
2 (2n−1)

−∆
2 (2n−1)

dq
∣∣ d
dq |ψ(q)|

2
∣∣).

(52)
Notably, these two contributions to the infidelity arise precisely
from the approximations used in simplifying the exact state to
the approximate state. The first contribution depends on the
support of ψ(q) outside of |q| ≤ ∆

2 (2
n − 1), and the second

on the derivative of ψ(q).
Moreover, D/A conversion is defined by Eq. (47). By

an analysis similar to the A/D direction, also presented in
Appendix C, we find that the fidelity of D/A conversion is

1−O

(∫ −∆
2 (2n−1)

−∞
dq|ψ(q)|2+

∫ ∞

∆
2 (2n−1)

dq|ψ(q)|2
)
, (53)

where now ψ(q) = 1√
∆

∑
s cssinc

(
π(q−qs)

∆

)
is the CV

wave function upon ideal D/A conversion. Evidently, in this
direction, the fidelity is impeded only by the support of ψ(q)
outside |q| < ∆

2 (2
n − 1). A term analogous to the second

contribution in Eq. (52) is absent, because the approximation
that produces this contribution is naturally satisfied in the D/A
direction; see Appendix C for details.

In summary, the performance of AD/DA conversion via
non-Abelian QSP is encapsulated in the following theorem:

Theorem 2 (Quantum AD/DA Conversion with Non-Abelian
QSP). The quantum D/A conversion protocol based on hybrid
non-Abelian QSP achieves a fidelity

1−O

(∫ −∆
2 (2n−1)

−∞
dq|ψ(q)|2 +

∫ ∞

∆
2 (2n−1)

dq|ψ(q)|2
)
,

(54)
at a gate complexity O(n) and time complexity
O(∆2n), where n is the number of qubits,
ψ(q) = 1√

∆

∑
s cssinc

(
π(q−qs)

∆

)
is the resulting CV

wave function, {cs} are the coefficients of the initial qubit
state |ψ⟩Q =

∑
x cs|ϕs⟩Q being transferred, and ∆ is a

spacing parameter.
Analogously, in reverse this furnishes a quantum A/D con-

version protocol with identical gate and time complexity, and
a fidelity given by Eq. (52).

V. QUANTUM FOURIER TRANSFORM FROM OSCILLATOR
EVOLUTION

The above quantum AD/DA conversion protocols can be
used to implement quantum algorithms on hybrid CV-DV
processors. We demonstrate this by using these protocols
to implement the quantum Fourier transform (QFT) on CV-
DV hardware. The QFT is an important quantum subroutine,
ubiquitous in many quantum algorithms, such as Shor’s al-
gorithm [91], phase estimation [17], and quantum gradient
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estimation [92]. It is defined on an n-qubit state |ψ⟩Q =∑
x cx|x⟩Q as the unitary transformation

UQFT|ψ⟩Q =
∑
x

[∑
y

1√
2n
cye

2πixy/2n

]
|x⟩Q, (55)

which effectively implements a discrete Fourier transform of
the coefficients cx. While the traditional construction of the
QFT as a DV quantum circuit is well-known [17], [93], the
construction on CV-DV hardware will differ significantly due
to the fundamental differences between oscillators and qubits.

To motivate our construction of the QFT on a CV-DV
system, recall that the free evolution of an oscillator swaps
position and momentum (see Eq. (13)), thus applying a con-
tinuous Fourier transform to the underlying wave function.
Using this intuition, we show that by transferring an initial
DV state to an oscillator state, enacting a free evolution
for an appropriately chosen time, and finally transferring the
state back to qubits, the QFT of the initial DV state can
be extracted. Importantly however, modifications are required
to connect this continuous Fourier transform to the discrete
Fourier transform implemented by the QFT.

Prior work in this direction includes Ref. [67], which
describes a way of using Kerr nonlinearities between two
oscillators to perform the QFT. However, they encode the
qubit states into Fock states on the oscillators, which requires
a time an order of magnitude greater than a single photon
coherence time, and hence limits their utility. Their algorithm
also requires that one perform a photon-number resolved
measurement and post-select to disentangle the two oscillators,
which requires significant runtime and control. On the other
hand, the QFT algorithms we put forth here are not inhibited
by these challenges.

In this section, we first describe a correspondence between
the continuous Fourier transform and the discrete Fourier
transform, which will allow us to bridge the gap between
oscillator evolution and the QFT. Thereafter, we develop two
algorithms for realizing the QFT on CV-DV hardware by
incorporating the above AD/DA conversion protocols, first
using single-variable QSP, and then non-Abelian QSP.

A. Continuous-Discrete Fourier Transform Correspondence

Crucial to our construction of the QFT is a correspondence
between the continuous Fourier transform and the discrete
Fourier transform. Specifically, consider a discrete signal cx
for x ∈ [0, ..., N − 1], that is made periodic over x ∈ Z and
encoded in a continuous function f(q) as

f(q) =
∑
x∈Z

cxg(q − x∆), (56)

where g(q) is a basis function localized about q = 0 and ∆ is
the spacing between basis functions. The continuous Fourier
transform of this function evaluates to

f̃(p) =
∑
x∈Z

cxg̃(p)e
ipx∆, (57)

where g̃(p) is the Fourier transform of g(q). Splitting the index
x into x = Nk + y for k ∈ Z and y ∈ [0, 1, ..., N − 1], this

can be rewritten as∑
k∈Z

eipNk∆
N−1∑
y=0

cye
ipy∆g̃(p)

=
∑
l∈Z

g̃( 2π∆
l
N )

2π

N∆
δ(p− 2π

∆
l
N ) ·

N−1∑
y=0

cye
i2πyl/N

=
∑
l∈Z

2π

∆
g̃( 2π∆

l
N )δ(p− 2π

∆
l
N ) · c̃l

(58)

where we have noted that
∑
k∈Z e

ipNk∆ = 2π
N∆

∑
l∈Z δ(p −

2π
∆

l
N ) is a Dirac comb, and we have denoted by c̃l the discrete

Fourier transform of cy . Evidently then, the continuous Fourier
transform of a discrete signal that is encoded periodically in
continuous basis functions results in a sum over the discrete
Fourier transform of the signal, with coefficients proportional
to the Fourier transform of the basis function.

This correspondence can be used to perform the quantum
Fourier transform by letting cx be the coefficients of an initial
state on qubits. Then, f(q) represents the wave function of an
oscillator after transferring the qubits state with basis function
g(q). By enacting a continuous Fourier transform on the
oscillator (i.e. free evolution), the new wave function given by
Eq. (58) will pluck out the states |q = 2πl

N∆ ⟩ with coefficients
proportional to the discrete Fourier transform of cx. As this
discrete Fourier transform equates to the coefficients of QFT,
we find that appropriately transferring this state back to qubits
produces the QFT of the initial state. This is of course
requires a suitable choice of basis function g(q) whose Fourier
transform behaves favorably.

We use this correspondence to perform the QFT in both pro-
tocols presented below. We also show that by prepending the
initial state with a ancilla qubits |+⟩⊗a, we are able to make
the corresponding discrete signal approximately periodic, and
exploit the correspondence successfully, with a fidelity that
improves with increasing a.

B. Quantum Fourier Transform Protocols

We now combine the quantum AD/DA conversion protocols
of Sec. IV with the above correspondence to realize the
QFT on a CV-DV system, and provide analytical bounds on
its performance. It is first important to recall that AD/DA
conversion with single-variable QSP uses a basis of Gaussian
states gGaus(q) = 1√

σ 4√2π
e−q

2/4σ2

(see Eq. (27)), and AD/DA
conversion with non-Abelian QSP uses a basis of sinc states
gsinc(q) = 1√

∆
sinc(πq∆ ) (see Eq. (48)). Both of these basis

functions transform favorably under continuous Fourier trans-
form, which allows us to successfully exploit the above corre-
spondence. The Gaussian function maps to another Gaussian
function g̃Gaus(p) =

√
σ(2/π)1/4e−σ

2p2 , and the sinc function
maps to a box function g̃sinc(p) = (∆/2π)1/21|q|≤π/∆ where
1|q|≤π/∆ is an indicator function.

1) QFT Protocol 1: Hybrid Single Variable QSP: Using the
single-variable QSP D/A conversion protocol, the high level
construction of the QFT is as follows. We first transfer the
qubits state to an equivalent oscillator state with spacing ∆,
and then apply a displacement operation to make the state
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Fig. 6. The circuit used to implement the quantum Fourier transform of an n-qubit state |ψ⟩ using AD/DA conversion via single-variable QSP (Sec. IV-A).
For clarity, we have suppressed the number of qubits that the state transfer unitaries act on, but these unitaries are understood to be US-V

D/A(∆, n+ a+2) and
ŨS-V

D/A(∆
′, n + 2)†, where ∆′ = π

2n+2∆
is the reciprocal spacing. Here, D(·)) is a displacement operation, and F is the Fourier gate of Eq. (12). Ancilla

qubits |+⟩⊗a and |00⟩ are appended to the initial state to increase the fidelity with the QFT, as discussed in the main text. This circuit ouputs the state
|+⟩|+⟩UQFT|ψ⟩, from which the QFT may be obtained.

symmetric about q = 0 in position space. Subsequently, we
apply the Fourier gate to the oscillator, and finally transfer the
oscillator state back to qubits with a reciprocal spacing π

2n∆ =:

∆′ by using a modified D/A conversion unitary ŨS-V
D/A(∆

′, n)†,
where the controlled displacements that comprise this unitary
are each doubled. This modification implements the correct
phases of the QFT; intuitively, it ensures that the product of
the displacements equate to the proper phase (x∆) · (y · 2 ·
∆′) = 2πxy/2n. Throughout this construction, ancilla qubits
are appended to the initial state to make the underlying state
periodic and increase the fidelity with the exact QFT.

Let us verify this QFT construction on the input state
|ψ⟩Q =

∑
x cx|x⟩Q by going through it step-by-step. For

illustrative purposes, we present the corresponding QFT circuit
in Fig. 6. Note that in this figure, the initial state is appended
by |00⟩, which as we will see later, will improve the fidelity
with the exact QFT. To simplify the current presentation, we
exclude these qubits for now, and include them at the end of
the algorithm when they are necessary.

Step 1: First prepend |ψ⟩Q by a ancilla qubits |+⟩⊗aQ :

(
|+⟩⊗a|ψ⟩

)
Q
=

1√
2a

2a−1∑
k=0

2n−1∑
x=0

cx|2n · k + x⟩Q. (59)

The coefficients of this state are cx/
√
2a and repeat over 2a

periods of size 2n. This renders the coefficients approximately
periodic and will enable us to exploit the aforementioned
continuous-discrete Fourier transform correspondence.

Step 2: Next, use the D/A conversion unitary US-V
D/A(∆, n+

a) to transfer this state to the oscillator, producing the state

|0⟩Q
1√
2a

2a−1∑
k=0

2n−1∑
x=0

cx|2n · k + x,∆⟩O. (60)

This step suffers infidelity O((n+a)ϵ)+e−O(∆2/σ2), where ϵ
is the error in the QSP polynomial approximation to the square
wave function.

Step 3: At this stage, the initial state has been mapped to
an oscillator state, encoded in a basis of states with peaks
from q = 0 · ∆ to q = (2n+a − 1) · ∆. The next step is
to symmetrize these basis states about q = 0 by applying a
displacement D(−2n+a

2 ∆) to the oscillator, producing the state

1√
2a

2a/2−1∑
k=−2a/2

2n−1∑
x=0

cx|x+ 2nk,∆⟩O, (61)

where we have symmetrized the sum over k.

Step 4: Written in the position basis, the current state is

2a/2−1∑
k=−2a/2

2n−1∑
x=0

cx√
2aσ
√
2π

∫
dqe−(q−(2nk+x)∆)2/4σ2

|q⟩O.

(62)
The next step is to apply the Fourier gate (Eq. (12)) to this
state, which enacts a continuous Fourier transform on the
underlying wave function and produces√

σ

2a

√
2

π

∫
dq
∑
x

cxe
iq∆x

 2a/2−1∑
k=−2a/2

eiq2
nk∆

 e−σ2q2 |q⟩O.

(63)

The factor
∑2a/2−1
k=−2a/2 e

iq∆2nk in brackets is known as a
Dirichlet kernel. In the limit of large a, it behaves under an
integral as a Dirac comb

∑
l∈Z δ(

q∆2n

2π − l), suffering an error
O(1/2a). Taking the large a limit in Eq. (63), this factor will
select out values ql := l 2π

∆2n from the integral, such that we
can re-express the state as√

2πσ

∆2n

√
2

π

∑
l∈Z

∑
x

cxe
i2πlx/2ne−σ

2q2l |̃ql⟩O, (64)

where

|̃ql⟩O :=

√
∆2n

2π2a

∫ ql+
π

∆2n

ql− π
∆2n

dq

 2a/2−1∑
k=−2a/2

eiq2
nk∆

 |q⟩O
(65)

is a normalized state that becomes increasingly concentrated
around q = ql with increasing a. The infidelity suffered in
taking the large a limit and simplifying the state to Eq. (64)
is O(1/2a). Observe that taking this limit has given rise to a
phase ei2πlx/2

n

, which will ultimately reproduce the QFT.

Step 5: Lastly, we introduce n qubits in the state |0⟩Q, and
transfer the oscillator state to the n qubits using the modified
inverse D/A conversion unitary ŨS-V

D/A(∆
′, n)†, where ∆′ =

π
2n∆ is the reciprocal spacing. As we mentioned earlier, this
operation is modified such that the controlled displacements
comprising it are doubled. The application of this operation
is rather involved, and is fully presented in Appendix D. The
result is that the output of this stage is approximately a product
state |α⟩Q|β⟩O, with infidelity O(σ/∆). The qubits state is

|α⟩Q =
∑
x

cxe
−iπx/2UQFT|x⟩Q, (66)
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which is nearly the QFT of |ψ⟩Q, and the oscillator state is

|β⟩O =

√
2πσ

∆

√
2

π

∑
m∈Z

e−σ
2( 2π

∆ m)2 ˜| 2π∆ (m− 1
4 )⟩O, (67)

which is a discretized Gaussian state in the basis |̃ql⟩.
Evidently, the qubits state deviates from the QFT by a phase

e−iπx/2. This phase arises because the action of free evolution
on a state symmetrized about position q = 0 (as we have here)
really implements a symmetric QFT, with coefficients given by
a sum symmetrized about y = 0:

∑2n/2−1
y=−2n/2 cye

2πixy/2n . This
can be mapped to the usual QFT by shifting y 7→ y + 2n/2,
as the expense of incurring a phase e−iπx/2.

Fortunately, this phase is inconsequential and can be re-
moved by appending |00⟩ to the initial state as (|ψ⟩|00⟩)Q.
This guarantees that x mod 4 = 0 for any nonzero cx, such
that each phase is e−iπx/2 = 1. Then, A/D conversion onto
n+ 2 qubits yields the state [17]

UQFT(|ψ⟩|00⟩) = |+⟩|+⟩UQFT(|ψ⟩), (68)

from which the QFT of |ψ⟩ may be extracted. This addresses
the additional ancilla qubits |00⟩ depicted in Fig. 6.

Performance: The bulk of the gate count of this protocol
comes from the D/A conversion via single-variable QSP.
Copying over the complexities from Sec. IV-A, we find a gate
count O(2n+a log(1/ϵ)) and time complexity O(2n+a(∆ +
log(1/ϵ))). Likewise, by aggregating together the infidelities
suffered at each step above, we find a total fidelity

1−O((n+ a)ϵ)−O(σ/∆)−O(1/2a), (69)

where ϵ is the error in the QSP polynomial approximation to a
square wave function. As expected, the fidelity is maximized
in the limit of small QSP error, large relative spacing between
the oscillator basis states, and a large number of ancilla qubits.

Overall, this analysis has proven the following theorem:

Theorem 3 (QFT from Oscillator Evolution and AD/DA
Conversion (Single-Variable QSP)). Using the single-variable
QSP AD/DA conversion protocol, oscillator evolution, and
additional bosonic gates one can realize the quantum
Fourier transform of an n qubit state with fidelity 1 −
O((n + a)ϵ) − O(e−O(∆2/σ2)) − O(1/2a), gate complex-
ity of O(2n+a log(1/ϵ)), and time complexity O(2n+a(∆ +
log(1/ϵ))), where a is the number of ancilla qubits, ϵ is the
error of the QSP polynomial, and ∆ is a spacing parameter.

2) QFT Protocol 2: Hybrid Non-Abelian QSP: Analogous
to the presentation above, we can also implement the QFT
using AD/DA conversion via non-Abelian QSP. Our approach
is to first change the basis of the qubits state from the com-
putational basis to the basis {|ϕs⟩} used in the non-Abelian
QSP D/A conversion protocol (see Eq. (43)). Subsequently, we
transfer the qubits state to the oscillator, symmetrize the state
about q = 0 in position space, and then apply the Fourier gate.
Finally, we transfer the oscillator state back to the qubits with
an appropriately-chosen reciprocal spacing, and then transform
back to the computational basis to yield the QFT of the initial
state. We will again use ancilla qubits throughout the protocol

to improve the fidelity with the exact QFT.
We depict the circuit that implements this algorithm in

Fig. 7. Let’s again verify its performance by studying its action
on an initial n-qubit state |ψ⟩Q =

∑
x cx|x⟩Q.

Step 1: As before, first prepend |ψ⟩ by a ancilla qubits
|+⟩⊗a to make the coefficients approximately periodic:

(
|+⟩⊗a|ψ⟩

)
Q
=

1√
2a

2a−1∑
k=0

2n−1∑
x=0

cx|2n · k + x⟩Q. (70)

Step 2: The next step is to map this state from the
computational basis to the basis {|ϕs⟩}, which will enable
us to use D/A conversion via non-Abelian QSP. To specify an
appropriate correspondence between these bases, recall that in
this context the string s ∈ {+1,−1}n+a is associated with a
position qs = ∆

2 (
∑n+a−1
j=1 sj2

j−1 − sn+a2n+a−1) that takes
discrete values in the range [−∆

2 (2
n+a − 1), ∆2 (2

n+a − 1)]
with spacing ∆ (see Eq. (45)). We will therefore index each
such possible value by an integer s, defined as

s : = 1
∆

(
qs +

∆
2 (2

n+a − 1)
)

=

n+a−1∑
j=1

1 + sj
2

2j−1 +
1− sn+a

2
2n+a−1,

(71)

which takes values s ∈ {0, 1, ..., 2n+a − 1}.
We then assume access to a unitary operator T that maps

between these bases as T |s⟩ = |ϕs⟩. As shown in Appendix D,
T can be easily implemented as a product of local operations:

T = (Hσx)
⊗(n+a−1) ·Hn+a · σ(1)

z σ(n+a)
z · P↔, (72)

where P↔ is a permutation operation which reverses the order
of qubits (i.e., P↔|0011⟩ = |1100⟩). P↔ can be realized as a
product of swap gates, or alternatively accommodated for at
no cost by simply adopting a convention to reverse order the
qubits of the input state. Applying T to Eq. (70) generates

1√
2a

2a−1∑
k=0

2n−1∑
x=0

cx|ϕ2n·k+x⟩Q. (73)

where we are now indexing |ϕs⟩ by the associated integer
s = 2n · k + x to simplify analysis.

Step 3: Next, prepare the oscillator in the sinc state
|0,∆⟩sinc

O = 1√
∆

∫
dq sinc

(
πq
∆

)
|q⟩O, and transfer the qubits

state to the oscillator by applying the D/A conversion unitary
UN-A

D/A (∆, n+ a) as per Eq. (47), producing the state

|0⟩Q ⊗
1√
2a

2a−1∑
k=0

2n−1∑
x=0

cx√
∆

∫
dq sinc

(
π(q−q2n·k+x)

∆

)
|q⟩O.

(74)
The infidelity suffered in this step is quantified by the expres-
sion in Eq. (52); a careful analysis of this scenario, presented
in Appendix D, indicates that the infidelity scales as O(1/2a).
By inserting the expression for qs and symmetrizing the sum
over k, the expression for the oscillator state simplifies to

2n−1∑
x=0

2a/2−1∑
k=−2a/2

cx√
2a ·∆

sinc
(
π(q−∆(2n·k+x−1/2))

∆

)
. (75)

Step 4: Next, symmetrize the oscillator state about q = 0 by
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Fig. 7. The circuit used to implement the quantum Fourier transform of an n-qubit state |ψ⟩ using AD/DA conversion of via non-Abelian QSP (Sec. IV-B).
For clarity, we have suppressed the number of qubits that the state transfer unitaries act on, but these unitaries are understood to be UN-A

D/A (∆, n+ a+2) and
UN-A

D/A (∆′, n+ a+2)†, where ∆′ = 2π
2n+a+2∆

is the reciprocal spacing. Here, T is a basis transformation from the computational basis to the basis {|ϕs⟩}
(see Eq. (72)), D(·) is a displacement operation, and F is the Fourier gate (oscillator free evolution). Ancilla qubits |+⟩⊗a are prepended to the initial state
to increase the fidelity with the exact QFT. The circuit outputs the state |+⟩|+⟩UQFT|ψ⟩|0⟩⊗a in the qubits register, from which the QFT may be extracted.

applying a displacement D
(
∆
2

)
, outputting the wave function

2n−1∑
x=0

2a/2−1∑
k=−2a/2

cx

2a
√
∆

sinc
(
π(q−∆(2n·k+x))

∆

)
. (76)

Step 5: Subsequently, we apply the Fourier gate to the
oscillator, which transforms the above wave function to its
continuous Fourier transform:√

∆

2π
1|q|≤π/∆

2n−1∑
x=0

2a/2−1∑
k=−2a/2

cx√
2a
eiq∆xeiq∆2nk =: ψ̃(q).

(77)
Step 6: After the Fourier gate, we will perform the inverse

of Steps 4 and 5, but now with the reciprocal spacing ∆′ =
2π

2n+a∆ chosen to produce the QFT. We first enact the inverse of
Step 5; that is, we apply the displacement D(−∆′/2), which
transforms the wave function to ψ̃(q +∆′/2).

Step 7: Next, we perform the inverse of Step 4 by trans-
ferring the oscillator state back to a state on n+ a qubits by
applying UN-A

D/A (∆′)†. As per Eq. (42), this produces the state

2n+a−1∑
s=0

∫
dq ψ̃(q′′s )sinc( πq∆′ )|ϕs⟩Q|q⟩O,

ψ̃(q′′s ) =
∑
x

√
∆

2π2a

∫ π
∆

−π
∆

dq cxe
iq′′s ∆x

[∑
k

eiq
′′
s ∆2nk

]
sinc( πq∆′ )

(78)
where q′′s := q+ q′s+

∆
2 , and q′s = ∆′s− ∆′

2 (2n+a− 1). Note
that we have not used any approximations to simplify this
expression, as was done in Sec. IV-B. Doing so is unnecessary
here, and does not inhibit implementation of the QFT.

As in the previous QFT protocol, the factor∑2a/2−1
k=−2a/2 e

i(q+q′s+
∆
2 )∆2nk in brackets is the Dirichlet

kernel, which in the limit of large a behaves as the Dirac
comb

∑
l∈Z δ(

(q+qs)∆2n

2π − l), suffering error O(1/2a) at
finite a. One can take this limit to drastically simplify this
state; the full technical analysis is presented in Appendix D.
The final result is that the state simplifies to the product state[

2n−1∑
l=0

(
1√
2n

2n−1∑
x=0

cxe
i2πlx/2ne−iπx/2

)
|ϕs=2al⟩Q

]
|̃0⟩O,

(79)
where here

|̃0⟩O :=

√
∆2n

2π

∫ π
∆2n

−π
∆2n

dq
1√
2a

2a/2−1∑
k=−2a/2

eiq∆2nk|q⟩O, (80)

is a state that becomes increasingly concentrated around q = 0

with increasing a, and the infidelity in reaching Eq. (79)
is O(1/2a). Evidently, the oscillator and qubits are now
decoupled, and the qubits state resembles the QFT evaluated in
the basis |ϕs=2al⟩. Again, the presence of the QFT coefficients
arises from the continuous-discrete correspondence of the
Fourier transform discussed earlier.

Step 8: To extract the QFT from this state, the last step is
to transform from the {|ϕs⟩} basis back to the computational
basis using T †. This acts as T †|ϕs=2al⟩ = |2al⟩ = |l⟩|0⟩⊗a,
such that its application to the previous state produces2n−1∑

l,x=0

1√
2n
cxe

i2πlx/2ne−iπx/2|l⟩ ⊗ |0⟩⊗a

Q

⊗ |̃0⟩O

=

[
2n−1∑
x=0

e−iπx/2cxUQFT (|x⟩)⊗ |0⟩⊗a
]
Q

⊗ |̃0⟩O

(81)
Evidently, the remaining state on the first n qubits is nearly
the QFT of the initial state, up to a phase e−iπx/2, just as in
the previous QFT protocol. Again, this phase arises because
this protocol really implements a symmetric QFT, and can be
removed by appending |00⟩ to the initial state, outputting the
state UQFT(|ψ⟩|00⟩) = |+⟩|+⟩UQFT(|ψ⟩).

Performance: Consider first the complexity of this QFT
protocol, the bulk of which is due to the use of non-
Abelian AD/DA conversion. As per the performance bounds
in Sec. IV-B, the gate count scales as O(n+ a), and the time
complexity as O(∆2n+a). Next, by summing the infidelities
suffered at Step 3 and Step 7, we find the overall fidelity of
this QFT protocol is simply 1−O(1/2a), which is maximized
in the limit of a large number of ancilla qubits.

In summary, this has proven the following theorem:

Theorem 4 (QFT from Oscillator Evolution and AD/DA Con-
version Via Non-Abelian QSP)). Using AD/DA conversion via
hybrid non-Abelian QSP , oscillator evolution, and additional
bosonic gates one can realize the quantum Fourier transform
of an n qubit state with fidelity 1−O(1/2a), gate complexity
O(n + a), and time complexity O(∆2n+a), where a is the
number of ancilla qubits and ∆ is a spacing parameter.

VI. CONCLUSION AND OUTLOOK

In this paper, we have established a framework of mixed
analog-digital QSP for execution on hybrid CV-DV quantum
hardware. These algorithms generate polynomial transforma-
tions of position and momentum, and open the door to a wide
variety of algorithms on CV-DV quantum processors. We used
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this framework to present two unitary protocols that convert
a DV quantum state to a CV quantum state and vice-versa
(Theorems 1 and 2), thus furnishing a quantum counterpart
to AD/DA conversion in classical signal processing. We estab-
lished the gate and time complexity of both AD/DA conversion
protocols; notably, the protocol based on hybrid non-Abelian
QSP achieves an efficient gate count of O(n) for converting
between an n-qubit state and a CV state.

As a further contribution, we demonstrated how this frame-
work can realize the quantum Fourier transform of an n-
qubit state by simply transferring the qubits state to an
oscillator, letting the oscillator undergo free-evolution, and
then transferring the state back to the qubits (Theorems 3
and 4). Importantly, the protocol incorporating non-Abelian
QSP requires only O(n) hybrid CV-DV gates to implement
the QFT, as opposed to the O(n2) gates of the conventional
construction of the QFT [17].

Despite these results, ample open questions remain to be
addressed. First, while we have shown that non-Abelian QSP
offers more efficient protocols for AD/DA conversion and the
QFT compared to its single-variable counterpart, a complete
theory of non-Abelian QSP remains to be established, funda-
mentally hinging upon an extension of QSP to the multivariate
setting [27], [30], [85], [94]. Second, while classical digital
signal processing benefits from its robustness, it is not clear
how to use analog-digital QSP can be made robust against the
noise afflicting quantum oscillators and qubits. One idea is to
generalize the connection between classical signal processing,
frames [95], and wavelet theory [96] to the quantum setting.
Conversely, frames and wavelets could also guide the design
of novel QSP algorithms.

In addition, while our implementation of the QFT with non-
Abelian QSP achieves a gate count linear in the number of
qubits, there exist more gate-efficient constructions of the QFT
on qubits, which leverage parallelization [97]. Accordingly,
it remains an open question how to parallelize our QFT
construction over multiple oscillators, which could perhaps
prove advantageous. In addition, it would be interesting to
investigate what other algorithms and operations could be
realized through analog-digital QSP. For instance, analogous
to our QFT constructions, the fractional quantum Fourier
transform [98], [99] could be realized by letting the oscillator
evolve for only a fraction of its period. Likewise, given the
unification of quantum algorithms afforded by QSP, it appears
promising that analog-digital QSP could act as a Rosetta
Stone for translating quantum algorithms from DV hardware
to hybrid CV-DV hardware.

Just as the fundamental roles that analog and digital sig-
nal processing play in classical computing, our framework
provides a concrete way to process mixed analog-digital
quantum signals. One example of such analog quantum data
is electromagnetic waves that may arise in radar and wireless
communications. Despite the fact that current antennas are
mostly classical, advancements in quantum hardware have
opened opportunities to explore quantum effects of these
EM waves with quantum antennas [47], [48]. There are also
opportunities to design quantum matched filters and filter
banks to enhance detection and estimation sensitivity [100]–

[102]. More broadly, it would be exciting to synthesize our
QSP framework with classical mixed signal processing [2],
[14] to develop a theory of quantum-classical signal pro-
cessing. Beyond theoretical work, co-designing these novel
signal processing frameworks with hardware and chips could
harness quantum information to make real-world impacts
in the forthcoming quantum era of electrical and computer
engineering [103], [104].
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APPENDIX A
A BRIEF REVIEW OF QUANTUM SIGNAL PROCESSING

The idea behind quantum signal processing (QSP) is to use
qubit operations to implement a polynomial transformation of
a linear operator [26], [40]. In its simplest incarnation, QSP
considers a fixed z-rotation

U(y) := eiyσz =

[
eiy 0
0 e−iy

]
. (82)

Then, the QSP sequence is constructed as an interspersed
product of this z-rotation and parameterizable x-rotations:

eiϕ0X
d∏
j=1

U(y)eiϕjX =

[
F (eiy) iG(eiy)
iG(e−iy) F (e−iy)

]
. (83)

where {ϕ0, . . . , ϕd} are the parametric phases of the x-
rotations. As expressed in this equation, the matrix elements
of this sequence are degree d Laurent polynomials:

F (eiy) =

d∑
n=−d

fne
iny, G(eiy) =

d∑
n=−d

gne
iny (84)

where F (·) and G(·) are Laurent polynomials with real
coefficients fn, gn ∈ R and parity d mod 2 (i.e., only even or
odd coefficients are non-zero, depending on d). By unitarity,
these polynomials obey F (eiy)F (e−iy)+G(eiy)G(e−iy) = 1.
Importantly, for any such polynomials, there exist correspond-
ing phases ϕj . In addition, these phases can be computed
efficiently with classical algorithms [35], [36], [38], [79],
[105].

Moreover, QSP can be generalized beyond single qubit
dynamics. Important such generalizations are the quantum
eigenvalue transformation and the quantum singular value
transformation [24]. These work by replacing U(y) with a
unitary block encoding of a linear operator A:[

A ·
· ·

]
(85)

(this requires ∥A∥ by unitarity). By analogy with U(y), which
itself block-encodes eiy in its upper left block as per Eq. (82),
one can construct an analogous QSP sequence that outputs a
polynomial in A: [

F (A) ·
· ·

]
, (86)

where F (A) obeys conditions analogous to F (eiy). This
polynomial can be chosen to act on either the eigenvalues
of A or its singular values (e.g. if A is rectangular), corre-
sponding to the eigenvalue transformation and singular value
transformation, respectively. See Ref. [26] for a tutorial and
more details.

In the main text, we extended this construction of QSP to
hybrid CV-DV systems. Our hybrid single-variable QSP was
constructed directly as an extension of Eqs. (83) and (84) to
bosonic operators x̂ and p̂. On the other hand, our hybrid non-
Abelian QSP was designed as a natural generalization of this
interspersed sequence to multiple variables.

APPENDIX B
FORWARD DIRECTION OF THE HYBRID CV-DV

NON-ABELIAN QSP THEOREM

In this section, we focus on showing an inductive proof
that the above claim in Eqs. (23) and (24) is correct: starting
from Ud given by Eq. (23), we will show that Ud+1 takes an
analogous form with Laurent polynomials given by Eq. (24).

Consider a single iteration of the non-Abelian hybrid QSP
sequence:

W (k)
z eiϕ

(k)
j σxW (λ)

z eiϕ
(λ)
j σx =

[
w(vA

ϕ
(k)
j ,ϕ

(λ)
j
− v−1D

ϕ
(k)
j ,ϕ

(λ)
j

) iw(vB
ϕ
(k)
j ,ϕ

(λ)
j

+ v−1C
ϕ
(k)
j ,ϕ

(λ)
j

)

iw−1(vC
ϕ
(k)
j ,ϕ

(λ)
j

+ v−1B
ϕ
(k)
j ,ϕ

(λ)
j

) w−1(−vD
ϕ
(k)
j ,ϕ

(λ)
j

+ v−1A
ϕ
(k)
j ,ϕ

(λ)
j

)

]
(87)

where we use the shorthand notation Aϕ1,ϕ2 ≡
cosϕ1 cosϕ2, Bϕ1,ϕ2

≡ cosϕ1 sinϕ2, Cϕ1,ϕ2
≡

sinϕ1 cosϕ2, Dϕ1,ϕ2
≡ sinϕ1 sinϕ2. Then we have

Ud+1 = Ud

(
W (k)
z eiϕ

(k)
d+1σxW (λ)

z eiϕ
(λ)
d+1σx

)
=

[
Fd+1(w, v) iGd+1(w, v)

iGd+1(w
−1, v−1) Fd+1(w

−1, v−1)

]
. (88)
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Let’s compute Fd+1(w, v) and Gd+1(w, v) explicitly. First
calculating Fd+1(w, v), we have

Fd+1(w, v)

=Fd(w, v)
[
wvA

ϕ
(k)
d+1,ϕ

(λ)
d+1

− wv−1D
ϕ
(k)
d+1,ϕ

(λ)
d+1

]
+ iGd(w, v)

[
iw−1vC

ϕ
(k)
d+1,ϕ

(λ)
d+1

+ iw−1v−1B
ϕ
(k)
d+1,ϕ

(λ)
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]
=

d∑
rs=−d

(
frsw

rvswvA
ϕ
(k)
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(λ)
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− frswrvswv−1D
ϕ
(k)
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(λ)
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− grswrvsw−1vC
ϕ
(k)
d+1,ϕ

(λ)
d+1

− grswrvsw−1v−1B
ϕ
(k)
d+1,ϕ

(λ)
d+1

)
.

(89)

We would like to express this in the canonical form defined
by Eq. (24).

From the Baker–Campbell–Hausdorff formula, we have the
following elementary relationship between w and v:

vsw = wvseis
λk
4 , vsw−1 = w−1vse−is

λk
4 . (90)

Substituting this into Eq. (89), Fd+1(w, v) can be recast into
the canonical form

Fd+1(w, v)

=

d∑
r,s=−d

(
frsw

r+1vs+1eis
λk
4 A

ϕ
(k)
d+1,ϕ

(λ)
d+1

− frswr+1vs−1eis
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4 D
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4 C
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− grswr−1vs−1e−is
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4 B
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d+1,ϕ

(λ)
d+1

)
. (91)

Several observations are immediately in order:

1) The power of w and v at most change by 1, and therefore
Fd+1 is a degree d+ 1 bivariate Laurent polynomial.

2) The non-commutative nature of x̂ and p̂ gives rise to
an additional complex phase e±is

λk
4 in the polynomial

coefficients.

Denoting the Laurent polynomial coefficients of Fd+1 and
Gd+1 are f ′rs and g′rs, then using the above expression, we
can explicitly write these coefficients in terms of frs and grs:
• Case 1: r = d, d+ 1:

f ′rs =



fr−1,s−1e
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ϕ
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, s = −d,−(d+ 1).

• Case 2: r = −d,−d− 1:

f ′rs =
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• Case 3: |r| ≤ d− 1:

f ′rs =
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The above three cases can be understood in Fig. 8.

Fig. 8. Illustration of the above three cases on a 2-dimensional plane of index
r and s. Appending one more iteration of QSP corresponds to expanding the
area of the square by two in both dimensions. Case 1 (purple), case 2 (blue),
case 3 (orange + green + grey).

Similarly to Eq. (89), the new polynomial Gd+1(w, v) is
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, (92)

where we have used Eq. (90) to arrive at the last line. From
this iterative relation, we can similarly express the coefficients
g′r,s in terms of frs and grs:
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1) r = d, d+ 1:

g′rs =



fr−1,s−1e
i(s−1)λk

4 B
ϕ
(k)
d+1,ϕ

(λ)
d+1

, s = d, d+ 1

fr−1,s−1e
i(s−1)λk

4 B
ϕ
(k)
d+1,ϕ

(λ)
d+1

+ fr−1,s+1e
i(s+1)λk

4 C
ϕ
(k)
d+1,ϕ

(λ)
d+1

, |s| ≤ d− 1,

fr−1,s+1e
i(s+1)λk

4 C
ϕ
(k)
d+1,ϕ

(λ)
d+1

, s = −d,−(d+ 1).

2) r = −d,−d− 1:

g′rs =



gr+1,s+1e
−i(s+1)λk

4 A
ϕ
(k)
d+1,ϕ

(λ)
d+1

, s = −d,−d− 1

−gr+1,s−1e
−i(s−1)λk

4 D
ϕ
(k)
d+1,ϕ

(λ)
d+1

+ gr+1,s+1e
−i(s+1)λk

4 A
ϕ
(k)
d+1,ϕ

(λ)
d+1

, |s| ≤ d− 1,

gr+1,s−1e
−i(s−1)λk

4 D
ϕ
(k)
d+1,ϕ

(λ)
d+1

, s = d, d+ 1.

3) |r| ≤ d− 1:

g′rs =



fr−1,s−1e
i(s−1)λk

4 B
ϕ
(k)
d+1,ϕ

(λ)
d+1

+ fr−1,s+1e
i(s+1)λk

4 C
ϕ
(k)
d+1,ϕ

(λ)
d+1

−gr+1,s−1e
−i(s−1)λk

4 D
ϕ
(k)
d+1,ϕ

(λ)
d+1

+ gr+1,s+1e
−i(s+1)λk

4 A
ϕ
(k)
d+1,ϕ

(λ)
d+1

, |s| ≤ d− 1

fr−1,s−1e
i(s−1)λk

4 B
ϕ
(k)
d+1,ϕ

(λ)
d+1

− gr+1,s−1e
−i(s−1)λk

4 D
ϕ
(k)
d+1,ϕ

(λ)
d+1

, s = d, d+ 1

fr−1,s+1e
i(s+1)λk

4 C
ϕ
(k)
d+1,ϕ

(λ)
d+1

+ gr+1,s+1e
−i(s+1)λk

4 A
ϕ
(k)
d+1,ϕ

(λ)
d+1

, s = −d,−d− 1.

These relationships suggest that if d is even, then frs is only
non-zero when r, s are both even. Likewise, if d is odd, then
fr,s is non-zero when r, s are both odd.

APPENDIX C
DETAILS ON QUANTUM AD/DA CONVERSION PROTOCOLS

Here we include additional information on the AD/DA
conversion protocols of Sec. IV, including additional caveats
and proofs of performance bounds.

A. Quantum AD/DA Conversion: Hybrid Single-Variable QSP

1) Fidelity Bound: In the context of quantum AD/DA
conversion via hybrid single-variable QSP, let us study how the
fidelity of the second stage (the QSP stage) scales with w and
ϵ. This stage suffers from two possible error modes. First, the
QSP polynomial approximation is only accurate to within ϵ,
and fails within the region

∣∣ cos[ π
2n−j (x−2n−j−1+ 1

2 )]
∣∣ ≤ 2δj .

Second, the state of the bosonic mode is not an exact position
eigenstate but is instead a Gaussian of finite width σ. Let
us consider the impact of these effects on the basis states
|x⟩Q|x,∆⟩Gaus

O which span the intermediate state. Accounting
for both error modes, we find that the overlap between the state
output by this stage and the desired output state |0⟩Q|x,∆⟩Gaus

O

can be expressed as

Q⟨0|Gaus
O ⟨x,∆|

n∏
j=1

Rj(x̂)|x⟩Q|x,∆⟩Gaus
O =

∫ ∞

−∞
dq

n∏
j=1

Aj(q/∆)
1√
2πσ

e−(q−x∆)2/2σ2

=

∫ ∞

−∞
dq′

n∏
j=1

Aj(x+ q′/∆)
1√
2πσ

e−q
′2/2σ2

,

(93)

where Aj(x+ q′

∆ ) is the function

Aj(x+ q′/∆) =

{
Pj(x+ q′/∆) xj = 0√

1− Pj(x+ q′/∆)2 xj = 1,
(94)

and we have used the substitution q′ = q − x∆ to reach
the second line. Note that at q′ = 0, Pj(x) suffers er-
ror at most ϵ from the desired step function, such that∏
j Aj(x) ≥ (1 − ϵ)n ≥ 1 − nϵ. This condition remains true

if
∣∣ cos[ π

2n−j (x + q′

∆ − 2n−j−1 + 1
2 )]
∣∣ ≥ 2δj , which we can

satisfy for all j and any x if |δ| ≤ ∆
π cos−1(2δ1), and δ1,∆

are chosen such that ∆
π cos−1(2δ1) ≥ 1/2, i.e., a sufficiently

large ∆ and sufficiently small δ1 = O( 1
2n ). Assuming such a

choice is made, we can therefore lower bound the overlap as

(1− nϵ) ·
∫ ∆

π cos−1(2w)

−∆
π cos−1(2w)

dq′
1√
2πσ

e−q
′2/2σ2

= (1− nϵ)

(
1− 2

∫ ∞

∆
π cos−1(2w)

dq′
1√
2πσ

e−q
′2/2σ2

)
,

(95)
where we have used the normalization of the Gaussian dis-
tribution in obtaining the second line. Using the inequality∫∞
a
dte−t

2 ≤ 1
2a

∫∞
a

2t · e−t2 = e−a
2

/2a, we find that this
quantity is lower bounded by

(1− nϵ)

(
1− e−u

2

u
√
π

)
(96)

where u = ∆√
2σπ

cos−1(2δ1). This scales asymptotically as

1−O(nϵ) +O(e−O(∆2/σ2) · σ/∆).
By an analogous argument, the overlap between the state

output by this protocol and an incorrect basis state |0⟩|y∆⟩O
(for y ̸= x) is upper bounded by e−

−∆2

8σ2 (x−y)2 . Accordingly,
for an arbitrary input state, its overlap with the incorrect
basis states scales as O(e−O(∆2/σ2)). Accounting for both of
these contributions, the total fidelity of this protocol scales
asymptotically as 1−O(nϵ)−O(e−O(∆2/σ2)).

B. Quantum AD/DA Conversion: Hybrid Non-Abelian QSP

1) Fidelity Bound: Next, let us consider the fidelity of
quantum AD/DA conversion with hybrid Non-Abelian QSP.
The exact state output by this protocol is the state in Eq. (42),
which is approximately equal to the desired state of Eq. (46),
in which the qubits and oscillator are decoupled. The infidelity
between these two states can be attributed to the two approx-
imations used in moving from Eq. (42) to Eq. (46). Let us
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investigate this by first considering the inner product between
these two states, which equates to∑

s

∫ ∞

−∞
dq ψ(qs)

∗ψ(q + qs)sinc
(
πq
∆

) n∏
k=1

cos
(
πq
∆2k

)
. (97)

First consider the contribution to this integral from the
region q ∈ [−∆

2 2
n, ∆2 2

n]. To knead this into a cleaner
expression, we will first note the infinite product identity

∞∏
k=1

cos
(
πq
∆2k

)
= sinc

(
πq
∆

)
. (98)

This allows us to write the contribution to the overlap as∑
s

∫ ∆
2 2n

−∆
2 2n

dq ψ(qs)
∗ψ(q+qs)

1∏∞
k=n+1 cos

(
πq
∆2k

) sinc2
(
πq
∆

)
.

(99)
Next we make use of the fact that sinc2

(
πq
∆

)
behaves as a

delta function for small ∆
2 :

sinc2(πq∆ ) ≈ ∆δ(q),∫
dq f(q)sinc2(πq∆ ) = ∆f(0) +O(∆2f ′(0)),

(100)

for small ∆ and an analytical function f(q). Over the inte-
gration region, the function 1∏∞

k=n+1 cos
( πq
∆2k

) is well behaved

with bounded value and derivative. Therefore we can invoke
this limit and find that the prior integral becomes

∆
∑
s

|ψ(qs)|2 +O

(
∆2
∑
s

ψ(qs)
∗ψ′(qs)

)
. (101)

As qs ∈ [−∆
2 (2

n−1), ∆2 (2
n−1)] in steps size ∆, the first term

is a Riemann sum from q = −∆
2 (2

n − 1) to q = ∆
2 (2

n − 1)
with 2n steps of size ∆. By invoking the standard error bound
on Riemann sums, we find that this equates to

∆
∑
s

|ψ(qs)|2 =

∫ ∆
2 (2n−1)

−∆
2 (2n−1)

dq|ψ(q)|2 +O

(
∆

2

∫ ∆
2 (2n−1)

−∆
2 (2n−1)

∣∣ d
dq |ψ(q)|

2
∣∣) =

1−
∫ −∆

2 (2n−1)

−∞
dq|ψ(q)|2 −

∫ ∞

∆
2 (2n−1)

dq|ψ(q)|2

+O

(
∆

∫ ∆
2 (2n−1)

−∆
2 (2n−1)

dq
∣∣ d
dq |ψ(q)|

2
∣∣) ,

(102)
where we have used the normalization of ψ(q) in obtaining
the last line. Next, by a similar analysis, the error term in
Eq. (101) scales as

∆2
∑
s

ψ(qs) ∗ ψ′(qs) ∼ ∆

∫ ∆
2 (2n−1)

−∆
2 (2n−1)

dq ddq |ψ(q)|
2 =

∆
[
|ψ(∆2 (2

n − 1))|2 − |ψ(−∆
2 (2

n − 1))|2
]
.

(103)

Next, let us consider the contribution to the overlap from
the rest of the integration range, starting first with the region

q ∈ [∆2 2
n,∞]. To bound this contribution, note that

n∏
k=1

cos
(
πq
∆2k

)
= (−1)m

n∏
k=1

cos
(
π(q−m∆2n)

∆2k

)
(104)

for integer m. So this product is periodic and peaked at each
m∆2n, with alternating sign. Accordingly, we may write the
integral over q ∈ [∆2 2

n,∞] as

∞∑
m=1

(−1)m
∫ (m+

1
2 )∆2n

(m− 1
2 )∆2n

dq

[
n∏
k=1

cos
(
π(q−m∆2n)

∆2k

)]
×
∑
s

ψ(qs)
∗ψ(q + qs)sinc

(
πq
∆

)
.

(105)

As before, we may write
∏n
k=1 cos

(
π(q−m∆2n)

∆2k

)
=

sinc(π(q−m∆2n)
∆ )/

∏∞
k=n+1 cos

(
π(q−m∆2n)

∆2k

)
, and make use

of the fact that sinc
(
πq
∆

)
also behaves as a delta function for

small ∆:

sinc(πq∆ ) ≈ ∆δ(q),∫
dq f(q)sinc(πq∆ ) = ∆f(0) +O(∆2f ′(0)),

(106)

for small ∆ and an analytical function f(q). Using this small
∆ limit under the integral plucks out the value

sinc
(
πq
∆

)∑
s ψ(qs)

∗ψ(q + qs)∏∞
k=n+1 cos

(
π(q−n∆2n)

∆2k

) ∣∣∣∣∣
q=n∆2n

∝ sinc (πn2n) = 0,

(107)
and the error in this result scales as

∼∆2
d
dq sinc

(
πq
∆

)∑
s ψ(qs)

∗ψ(q + qs)∏∞
k=n+1 cos

(
π(q−m∆2n)

∆2k

) ∣∣∣∣∣
q=m∆2n

=

∆2 (−1)m

m∆2n

∑
s

ψ(qs)
∗ψ(m∆2n + qs)

(108)

For a wave function whose magnitude decays for |q| ≥ ∆
2 (2

n−
1) (which is our case here, as we assume the bulk of the wave
function is contained in |q| ≥ ∆

2 (2
n − 1)), this scales as

≲
(−1)m

4 ·m2n

∑
s

∆|ψ(n∆2n + qs)|2

≈ (−1)m

4 ·m2n

∫ (m+
1
2 )∆2n

(m− 1
2 )∆2n

dq|ψ(q)|2
(109)

Inserting this expression into Eq. (105), we find that the sum
over all m is sufficiently bounded by O

( ∫∞
∆
2 (2n−1)

dq|ψ(q)|2
)
.

Moreover, an analogous strategy bounds the contribution to
the overlap from the integration range q ∈ [−∞,−∆

2 2
n, ] as

O
(∫ −∆

2 (2n−1)

−∞ dq|ψ(q)|2
)

.

Finally, piecing together each of the above contributions to
the overlap of Eq. (97), we find that the fidelity of this A/D



22

conversion protocol, scales as

1−O

(∫ −∆
2 (2n−1)

−∞
dq|ψ(q)|2 +

∫ ∞

∆
2 (2n−1)

dq|ψ(q)|2
)

−O

(
∆

∫ ∆
2 (2n−1)

−∆
2 (2n−1)

dq
∣∣ d
dq |ψ(q)|

2
∣∣).

(110)
This expression justifies the two approximations used above
in simplifying Eq. (42) to Eq. (46). Recall that these approx-
imates demanded that (1) the support of ψ(q) be primarily
limited to |q| ≤ ∆

2 (2
n − 1), which corresponds to the first

infidelity contribution above; and (2) that ψ(q) be slowly
varying relative to the sinc function, i.e., |dψdq | ≪ 1/∆, which
corresponds to the infidelity contribution from the last term
above.

Moreover, because this A/D protocol is unitary, its in-
verse (D/A conversion) achieves an analogous expression
for fidelity, upon re-interpreting ψ(q) as the wave func-
tion of qubits state transferred to the basis of sinc states:
ψ(q) = 1√

∆

∑
s cssinc

(
π(q−qs)

∆

)
. Inserting this expression

into Eq. (101) and the following analysis, we find that the
overlap between the exact and approximate state is roughly

∆
∑
s

|ψ(qs)|2 =
∑
s

|cs|2 = 1, (111)

with an error term that scales as
∫ −∆

2 (2n−1)

−∞ dq|ψ(q)|2 +∫∞
∆
2 (2n−1)

dq|ψ(q)|2. Hence, the fidelity of the D/A conversion
protocol furnished by US-V

D/A(∆, n) is

1−

(∫ −∆
2 (2n−1)

−∞
dq|ψ(q)|2 +

∫ ∞

∆
2 (2n−1)

dq|ψ(q)|2
)
. (112)

APPENDIX D
DETAILS ON STEPS OF QFT PROTOCOLS

A. QFT Protocol 1: Hybrid Single-Variable QSP

Here we provide additional details on the QFT protocol
using hybrid single-variable QSP.

1) Analysis of Step 5: Let us work through the details of
Step 5 of the QFT protocol. As shown in Sec. V, at the
beginning of this stage the state of the oscillator is√

2πσ

∆2n

√
2

π

∑
l∈Z

∑
x

cxe
i2πlx/2ne−σ

2q2l |̃ql⟩O, (113)

where

|̃ql⟩O :=

√
∆2n

2π

∫ ql+
π

∆2n

ql− π
∆2n

dq

[
1√
2a

∑
k

eiq2
nk∆

]
|q⟩O

(114)
is a normalized state concentrated around q = ql. We then
introduce n qubits in the state |0⟩⊗n, and apply the A/D
conversion protocol to transfer the oscillator state to the qubits.
Specifically, we use the operation ŨS-V

D/A(
π

2n∆ , n)
†, which is

modified such that the controlled displacements that comprise
it are each doubled (relative to the usual construction of
Fig. 3). Let’s work through the application of this operation
piece-by-piece.

The first stage of ŨS-V
D/A(

π
2n∆ , n)

† is the series of QSP
operations (see Fig. 3), which implement square waves with
periods 2π

2j∆ that flip the jth qubit dependent on the jth

bit of the oscillator position. In aggregate, these operations
partition position space into periods of size 2π/∆. As per the
construction of the square wave function in Eq. (31), these
periods are ((m− 1

4 )·
2π
∆ , (m+ 3

4 )·
2π
∆ ) for m ∈ Z. The square

waves of the QSP sequences divide each such period into 2n

sub-regions, each labeled by an n-bit string y corresponding to
the integer y = ∆2n

2π (q+ π
2∆ ) mod 2n. That is, each sub-region

is ( 2π
∆2n ([m−

1
4 ]2

n+y), 2π
∆2n ([m−

1
4 ]2

n+y+1)) and is labeled
by y ∈ {0, ..., 2n−1}. The overall action of the (inverse) QSP
sequences is to re-entangle the qubits with the oscillator by
flipping the qubits to the state |0⟩Q|q⟩O 7→ |y⟩Q|q⟩O for the
string y corresponding to position q.

Consider the action of these QSP operations on the state in
Eq. (113). If each QSP polynomial in the series is chosen to
approximate the square wave to within the accuracy spelled
out in Sec. IV-A, then these operations correctly discern the jth

bit of the position ql from the oscillator state |̃ql⟩O. Because
ql = l 2π

∆2n , the above analysis indicates that this position
corresponds to l = 2n([m − 1

4 ] + y). Using this insight, the
overall action of the QSP operations therefore produces the
following state√

2πσ

∆2n

√
2

π

∑
m

∑
x,y

cxe
i2π([m− 1

4 ]2
n+y)x/2n

× e−σ
2q2l |y⟩Q |̃ql⟩O =√

2πσ

∆2n

√
2

π

∑
m

∑
x,y

cxe
i2πyx/2ne−iπx/2

× e−σ
2q2l |y⟩Q |̃ql⟩O.

(115)

As per the use of n QSP sequences, the infidelity suffered
at this step is O(nϵ) where ϵ is the error of the polynomial
approximation to the step function.

In the next stage of ŨS-V
st ( π

2n∆ , n)
†, a sequence of controlled

displacements
∏n
j=1Dcj (

2π
∆2j ) is applied (which are doubled

relative to the usual construction). Collectively, these opera-
tions act on the oscillator as |q⟩O 7→ |q−

∑
j yj

2π
2j∆ ⟩O = |q−

2π
∆ ·

y
2n ⟩O, which equivalently maps |̃ql⟩O 7→ ˜| 2π∆ (m− 1

4 )⟩O.
The effect is to displace each sub-region of the CV wave
function by different amount so that all the 2n sub-regions
interfere with each other to produce the QFT coefficients.
Changing variables to q′ = q − 2π

∆
y
2n in the integral, the

resulting state is√
2πσ

∆2n

√
2

π

∑
m

∑
y

∑
x

cxe
i2πyx/2ne−iπx/2

× e−σ
2q2l |y⟩Q ˜| = 2π

∆ (m− 1
4 )⟩O.

(116)
To simplify this, note that in the limit of small σ/∆, e−σ

2q2l =

e−σ
2( 2π

∆2n [2n(m− 1
4 )+y])

2

≈ e−σ
2( 2π

∆ m)2 . Making this approx-
imation in the above state incurs an infidelity O(σ/∆), and
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allows us to re-express the state as

1√
2n

∑
y

∑
x

cxe
i2πlx/2ne−iπx/2|y⟩Q

×

√
2πσ

∆

√
2

π

∑
m

e−σ
2( 2π

∆ m)2 ˜| 2π∆ (m− 1
4 )⟩O.

(117)
where now the qubits and oscillator are decoupled. Notably,
this is the product state |α⟩Q|β⟩O quoted in Eqs. (66) and (67).

B. QFT Method 2: Non-Abelian QSP

Here we provide additional details on the QFT protocol
using non-Abelian QSP.

1) Implementing the Change of Basis Operation T : In
the QFT protocol of Sec. V-B, we used the change of basis
operation T . On n qubits, this operation is defined by a vector
s ∈ {−1,+1}n and its associated integer s:

s =

n−1∑
j=1

1 + sj
2

2j−1 +
1− sn

2
2n−1. (118)

T maps that maps between a computational basis state |s⟩ and
a corresponding state |ϕs⟩ defined in Eq. (43) as

|ϕs⟩ = (−1)γs ·
n⊗
j=1

[
1√
2

(
|0⟩+ sj |1⟩

)]
(119)

where the phase γs is

γs =

n−2∑
j=1

1

2
(sj + sj+1) +

1

2
(sn−1 − sn). (120)

For instance, if s = (1,−1, 1,−1), then the computational
basis state is |1010⟩; on the other hand γs = 1 such that
|ϕs⟩ = (−1) · |+⟩|−⟩|+⟩|−⟩.
T can be implemented as a simple product of local opera-

tions:

T = (Hσx)
⊗(n−1) ·Hn ·

n−1∏
j=1

(σ(j)
z σ(j+1)

z ) · P↔, (121)

where P↔ is a permutation operator that reverses the order of
qubits (i.e., P↔|0011⟩ = |1100⟩). To verify this, note that the
state |s⟩ can be written in the computational basis as

|s⟩ = | 1−sn2 ⟩ ⊗
1⊗

j=n−1

| 1+sj2 ⟩. (122)

where we have noted that sn is the most significant bit as per
Eq. (118), and hence this tensor product is from j = n down
to j = 1. The action of P↔ reverses the order of this tensor
product, mapping this state to

P↔|s⟩ = | 1−sn2 ⟩ ⊗
n−1⊗
j=0

| 1+sj2 ⟩ =: |←→s ⟩. (123)

P↔ can be implemented as a product of O(n2) swap gates
acting locally between adjacent qubits; each such swap gate
be constructed as a product of 3 CNOT gates. Alternatively,

P↔ can be accommodated for at no cost by simply changing
one’s convention to reverse the order of the qubits comprising
the input state.

Next, the action of the product of Z’s on |←→s ⟩ generates
the following phase:

n−1∏
j=1

(σ(j)
z σ(j+1)

z )

n−1⊗
j=1

| 1+sj2 ⟩ ⊗ |
1−sj
2 ⟩ =

n−2∏
j=1

(−1)(1+sj)/2 · (−1)(1+sj+1)/2

× (−1)(1+sn−1)/2(−1)(1−sn)/2 ˜|s⟩ =

(−1)n−1(−1)
∑n−2

j=0 (sj+sj+1)/2+(sn−1−sn)/2|←→s ⟩ =
(−1)n−1(−1)γs |←→s ⟩.

(124)

This implements the desired phase (−1)γs , up to a global
phase (−1)n−1. Moreover, note that we can simplify the
product

∏n−1
j=1 (σ

(j)
z σ

(j+1)
z ) as

n−1∏
j=1

(σ(j)
z σ(j+1)

z ) = σ(1)
z σ(n)

z . (125)

Lastly, the product of Hadamards and bit flips,
(Hσx)

⊗(n−1), maps from the computational basis to
the |±⟩ basis as Hσx| 1+sj2 ⟩ = |sj⟩ (i.e., |0⟩ 7→ |−⟩ and
|1⟩ 7→ |+⟩); and Hn as Hn| 1−sn2 ⟩ = |sn⟩ (i.e., |0⟩ 7→ |+⟩ and
|1⟩ 7→ |−⟩). Because the states |ϕs⟩ are defined in the |±⟩
basis, this appropriately prepares the state |ϕs⟩. In aggregate,
the change of basis transformation T can be implemented (up
to a global phase) as a simple product of local operations:

T = (Hσx)
⊗(n−1) ·Hn · σ(1)

z σ(n)
z · P↔. (126)

2) Step 7 Analysis: In Step 7, we obtained the state (see
Eq. (78))∑
s,j

√
∆

2π

∫ π/∆

−π/∆
dq cje

i(q+∆′
2 +q′s)∆j

×

[
1√
2a

∑
k

ei(q+
∆′
2

′
+q′s)∆2nk

]
sinc( πq∆′ )|ϕs⟩Q|q⟩O,

(127)
where q′s = ∆′s− ∆′

2

′
(2n+a−1). To simplify this expression,

note the factor
∑2a/2−1
k=−2a/2 e

i(q+∆′
2 +q′s)∆2nk in brackets is a

Dirichlet kernel. In the limit of large a, it behaves as the sum
of delta functions

∑
l∈Z δ((q +

∆′

2

′
+ q′s)∆2n − 2πl), with

an overall error O(1/2a) at finite a. Because the integral of
Eq. (127) extends from q = −π/∆ to π/∆, the delta functions
select out the values q+q′s+

∆′

2 = 2πl
∆2n for integers l = −2n/2

to l = 2n/2. Taking the large a limit, we can factor out the
more slowly varying components of the integrand evaluated
at the values q = 2πl

∆2n − q
′
s − ∆′

2 = 2πl
∆2n − ∆′(s − 2n+a

2 ),
while leaving the fast varying term

∑
k e

i(q+q′s+
∆′
2 )∆2nk in

the integrand. Splitting up the integral into a sum over l of
integrals from q = 2π(l−1/2)

∆2n − q′s − ∆′

2 to q = 2π(l+1/2)
∆2n −
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q′s − ∆′

2 , we can rewrite the above state as√
∆

2π

∑
s,j,l

cje
i2πlj/2nsinc

(
π
∆′ (

2πl
∆2n − q

′
s −

∆′

2
)

)
|ϕs⟩Q

×

[∫ 2π(l+1/2)
∆2n −q′s−∆′

2

2π(l−1/2)
∆2n −q′s−∆′

2

dq
1√
2a

∑
k

ei(q+q
′
s+

∆′
2 )∆2nk|q⟩O

]
=√

∆

2π

∑
s,j,l

cje
i2πlj/2nsinc

(
π
(
2al − (s− 2n+a

2 )
))
|ϕs⟩Q

×

[∫ 2π(l+1/2)
∆2n −qs−∆′

2

2π(l−1/2)
∆2n −q′s−∆′

2

dq
1√
2a

∑
k

ei(q+q
′
s+

∆′
2 )∆2nk|q⟩O

]
,

(128)
where the infidelity suffered at finite a is O(1/2a).

To knead this into the QFT, first let s̃ = s −
2n+a

2 ∈ [−2n+a/2,−2n+a/2 + 1, ..., 2n+a/2]. Then note that
sinc(π(2al − s̃)) = δ2al,s̃, which extracts out the values
s̃ = 2al ⇒ s = 2a(l + 2n

2 ) from the summation over s,
and enforces q′s +

∆′

2 = 2πl
∆2n . This forces the state in the

brackets to become∫ π
∆2n

−π
∆2n

dq
1√
2a

∑
k

ei(q+
2πl
2n∆)∆2nk|q⟩ =

∫ π
∆2n

−π
∆2n

dq
1√
2a

∑
k

eiq∆2nk|q⟩,

(129)

where we’ve noted ei2πlk = 1. This state is concentrated
around q = 0 (because the sum converges to the delta function
δ( q∆2n

2π ) for large a), and has norm∣∣∣∣∣
∫ π

∆2n

−π
∆2n

dq
1√
2a

∑
k

eiq∆2nk|q⟩

∣∣∣∣∣
2

=

∫ π
∆2n

−π
∆2n

dq
1

2a

∑
k,m

eiq∆2n(k−m) =

1

2a

∑
k,m

2π

∆2n
δkm =

2π

∆2n
.

(130)

Let us therefore denote the corresponding normalized state by

|̃0⟩ :=
√

∆2n

2π

∫ π
∆2n

−π
∆2n

dq
1√
2a

∑
k

eiq∆2nk|q⟩. (131)

We can therefore rewrite the total state of the system as√
∆

2π

∑
j,l

cje
i2πlj/2n

√
2π

∆2n
|ϕs=2a(l+2n/2)⟩Q0̃⟩O

=

[
2n/2∑

l=−2n/2

 1√
2n

2n−1∑
j=0

cje
i2πlj/2n

 |ϕs=2a(l+2n/2)⟩

]
|̃0⟩.

(132)
Evidently, the oscillator and qubits are decoupled, and the state
of the qubits is the quantum Fourier transform of the initial
state, evaluated in the basis |ϕs=2a(l+2n/2)⟩. Moreover, if we
shift the index of summation to l 7→ l+2n/2, we can rewrite

this state expression as[
2n−1∑
l=0

 1√
2n

2n−1∑
j=0

cje
i2πlj/2ne−iπj/2

 |ϕs=2al⟩

]
|̃0⟩.

(133)
This is the state quoted in the main text in Eq. (79)

3) Fidelity Analysis: Consider the fidelity of this QFT pro-
tocol. As we mentioned in Sec. V, the first source of infidelity
occurs in Step 3 due to the usage of the D/A conversion
protocol. The fidelity of this is quantified in Eq. (110), and
scales as

1−O

(∫ −∆
2 (2n+a−1)

−∞
dq|ψ(q)|2 +

∫ ∞

∆
2 (2n+a−1)

dq|ψ(q)|2
)

(134)
where ψ(q) is the wave function after being transferred to the
oscillator, which at this stage is

2n−1∑
j=0

2a/2−1∑
k=−2a/2

1√
2a ·∆

cjsinc
(
π(q−∆(2n·k+j− 1

2 ))

∆

)
.

(135)
Let us consider the integral from q = ∆

2 (2
n+a − 1) to ∞. In

this regime, the wave function scales at worst as

|ψ(q)|2 ∼ 1

2a ·∆
sinc2

[
π(q−∆

2 (2n+a−1)))

∆

]
(136)

such that the integral is (using the substitution q′ = q −
∆
2 (2

n+a − 1)):

O

(
1

2a ·∆

∫ ∞

0

dq′sinc2
[
πq′)
∆

])
= O(1/2a). (137)

Moreover, the other source of infidelity arises from taking
the large a limit in Step 7 when approximating the factor∑2a/2−1
k=−2a/2 e

iq∆2nk as a sum of delta functions. The infidelity
suffered in making this approximation is O(1/2a). Summing
these contributions to the infidelity, we find the overall fidelity
of this QFT protocol is

1−O(1/2a). (138)
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