

Hybrid Oscillator-Qubit Quantum Processors: Instruction Set Architecture, Abstract Machine Models, and Applications

Yuan Liu

Department of Electrical & Computer Engineering

Department of Computer Science

North Carolina State University

Acknowledgments

Steven Girvin, Yale Physics

Nathan Wiebe, University of Toronto CS Isaac L. Chuang, MIT Physics & EECS Gabriel Mintzer, MITNingyi Lv, YaleBenjamin Brock, YaleNam Vu, Lafayette CollegeVictor Batista, YaleDi Luo, MIT

Ella Crane (MIT), Michael DeMarco (LPS), Alec Eickbusch (Google Quantum AI), Richard Li (Yale), John Michael Martyn (MIT), Jasmine Sinanan-Singh (MIT), Shraddha Singh (Yale), Kevin C. Smith (Yale), Micheline B. Soley (U. Wisconsin-Madison), Takahiro Tsunoda (Yale)

- Fock state, energy eigenstate $\hat{n}|m
 angle=m|m
 angle; m=0,1,2,3,\ldots$
- Creation annihilation operator

$$a^{\dagger}|m
angle = \sqrt{m+1}|m+1
angle$$

 $a|m+1
angle = \sqrt{m+1}|m
angle$
 $\left[a,a^{\dagger}
ight] = 1$
 $\hat{n} = a^{\dagger}a.$

• Coherent state $|lpha
angle \ = \ e^{lpha a^{\dagger} - lpha^{*}a} |0
angle = e^{-rac{|lpha|^2}{2}} e^{lpha a^{\dagger}} |0
angle$

$$egin{array}{rcl} \hat{x} &=& \lambda_x(a+a^\dagger) \ \hat{p} &=& -i\lambda_p(a-a^\dagger) \end{array} & [\widehat{x},\widehat{p}] = i \end{array}$$

- The **physics** of oscillators are well known;
- Their computational power is much less wellknown

• Bosonic modes are ubiquitous:

- Vibrational modes of trapped ions or molecules
- Phonons in solids
- Quantum optics or fields
- Infinite-dimensional (in principle)

$$H_0 = \omega_{\rm R} \left[\hat{n} + \frac{1}{2} \right]$$

Outline

- Why Need Quantum Computers Made with Oscillators + Qubits?
- Theoretical Challenges for Hybrid Quantum Processors
- What are AMM and ISA and Why are They Important?
- ISA and AMM for Hybrid Quantum Processors
- Algorithms and Applications
- Conclusion and What is Next?

Why need quantum computers made with oscillators + qubits?

Theoretical needs

- Spin, boson, fermion
- Large dimensionality, resource efficient qudits.

SNAP gate universal control

Phys. Rev. A 92, 040303(R) (2015)

Experimental advancement

- Control: cQED cavity, trapped ions, boson sampling
- Bosonic codes

Nature 616, 50–55 (2023). Nature 616, 56–60 (2023).

Application driven

- Bosonic matter (vibrations, phonons, quantum fields,...) is difficult to simulate on qubit-based computers.
- Many problems are continuous in nature: optimization...

Theoretical challenges of oscillatorqubit quantum processors

- Universal control of oscillators
- Hybridize qubits and oscillators
- Beyond physical layer:
 - How to program?
 - How to reason about their computational power?
 - How to perform resource estimation?

A hybrid quantum computer

- Need an <u>abstract</u> <u>theoretical</u> <u>model for the</u> <u>hybrid QC</u>
- Need <u>universal</u> <u>instructions</u> to program

Outline

- Why Need Quantum Computers Made with Oscillators + Qubits?
- Theoretical Challenges for Hybrid Quantum Processors
- What are AMM and ISA and Why are They Important?
- ISA and AMM for Hybrid Quantum Processors
- Algorithms and Example Applications
- Conclusion and What is Next?

What are AMM and ISA?

AMM: Abstract Machine Model

AMM for classical computing machines

Turing machine

Finite automata

• ISA: Instruction Set Architecture

Instructions for EDSAC

- A n Add the number in storage location *n* into the accumulator.
- En If the number in the accumulator is greater than or equal to zero execute next the order which stands in storage location *n*; otherwise proceed serially.
- Z Stop the machine and ring the warning bell.

[Hennessy and Patterson. Computer Architecture: A Quantitative Selecti Approach, 5th Edition.]

puter Wilkes and Renwick Selection from the List of 18 Machine Instructions for the EDSAC (1949)

Instructions for 80x86

load
conditional branch
compare
store
add
and
sub
move register-register
call
return

How about for quantum computers?

AMM and ISA: Why are They Important?

• Architecture stack for classical and qubit-based quantum computers

• Instruction Set Architecture (ISA) bridges the high-level applications and low-level physical/device layers.

AMM and ISA for hybrid oscillator-qubit processors are unknown!

Beverland et al. Assessing requirements to scale to practical quantum advantage. (Microsoft, 2022)

Quantum Software Applications Machine learning Natural science Optimization					
Quantum Serverless (Classical Cloud/HPC + Quantum)					
Circuit Compilation Circuit Knitti	ng toolbox				
Synthesis, Layout & Routing, Optimization Entanglement Forging,	Embedding, Cutting				
	Primitive programs				
Quantum Runtime (Near-Time Classical + Quantum) Runtime Compilation/Error Suppression/Mitigation/Correction					
Dynamic Circuit (Real Time Classical + Quantum) Circuit Execution					

Quantum computation of stopping power for inertial fusion target design [arXiv:2308.12352] Nicholas C. Rubin,^{1,*} Dominic W. Berry,^{2,†} Alina Kononov,³ Fionn D. Malone,¹ Tanuj Khattar,¹ Alec White,⁴ Joonho Lee,^{1,5} Hartmut Neven,¹ Ryan Babbush,^{1,‡} and Andrew D. Baczewski^{3,§}

Bravyi et al. J. Appl. Phys. 132, 160902 (2022). IBM.

Why is Making ISA and AMM Difficult for Hybrid Processors?

- Need a physical architecture
- Need a model for error correction
- Need a universal gate set
- Need effective compilation methods

A hybrid quantum computer

Outline

- Why Need Quantum Computers Made with Oscillators + Qubits?
- Theoretical Challenges for Hybrid Quantum Processors
- What are AMM and ISA and Why are They Important?
- ISA and AMM for Hybrid Quantum Processors
- Algorithms and Example Applications
- Conclusion and What is Next?

Physical Layout of a Hybrid Processor

b)

Trapped ion hybrid CV-DV quantum processor

Motional oscillator modes

lon qubit

Coulomb interaction

 \checkmark (Drive-induced) qubit-oscillator coupling

Hybrid CV-DV quantum processor stack

Gates – The Key to Programmability

• Hybrid quantum processors allow us to define useful quantum gates.

Control flow: feedback, variational algorithms; modular architectures, distributed hybrid processor; autonomous error correction

processing

Benchmarking: Certifying the gates are working as intended

Wigner function or process tomography via heterodyne detection No randomized benchmarking Quantifying complexity of measurement, computation, sampling, post-

Hybrid Universal Control

- Qubit universal gate sets are well-known, while <u>hybrid universal gate</u> sets are less established.
- Qubit universal control

- Oscillator universal control $H = \frac{h_0(\hat{x}, \hat{p})}{\frac{polynomial}{polynomial}}$
- Hybrid universal control

$$H = h_0(\hat{x}, \hat{p}) + \vec{h}_1 \cdot \vec{\sigma}$$

Four independent polynomials

$$C(r) = \exp\left(-ir\hat{x}^3\right)$$

X, Y, Z

$$G_{\text{CD-ISA}} = \{X, Z, \hat{x}Z, \hat{p}Z\}$$
$$[\hat{x}Y, \hat{p}Z] = iX(\hat{x}\hat{p} + \hat{p}\hat{x})$$
$$[\hat{x}^nY, \hat{p}^mZ] = i[\hat{x}^n\hat{p}^m + \hat{p}^m\hat{x}^n]X$$

Universal Instruction Sets

				ISA Name	Minimum gate set
T :	Linear	oscillator	CONTROL	Gaussian	$\mathcal{G} = \{D(\alpha), S(\zeta), \mathrm{BS}(\theta, \varphi) \text{ or } \mathrm{TMS}(r, \varphi)\}$
	sal	or	1	Cubic	$\mathcal{G}+U_{3}\left(z ight)$
	Univers oscillat	cillat	onurc	Quartic	$\mathcal{G}+U_{4}\left(z ight)$
		SO OS	ΰ	SNAP	$\{D(\alpha), \mathrm{SNAP}(\vec{\varphi}), \mathrm{BS}(\theta, \varphi) \text{ or } \mathrm{TMS}(r, \varphi)\}$
	sal	b L	-	Phase-Space ISA	$\{\operatorname{CD}(eta), R_{arphi}\left(heta ight), \operatorname{BS}(heta, arphi)\}$
	liver	uybri atri	ontro	Fock-Space ISA	$\left\{ \mathrm{SQR}(ec{ heta},ec{arphi}), D(lpha), \mathrm{BS}(heta, arphi) ight\}$
	5	<u>д</u>	Ű	Sideband ISA	$\left\{ {{R_arphi}\left(heta ight),{ m JC}(heta),{ m BS}(heta ,arphi)} ight\}$

- Simple rotation, translation, squeeze of phase space distribution.
- Can achieve non-Gaussian operations on *m* oscillators!
- Can achieve fully universal control on an arbitrary set of n qubits and m oscillators!

Compilation Methods

• Full sets of analytical + numerical compilation methods are established for hybrid DV-CV quantum algorithms.

Single qubit-oscillator compilation

• Algorithmic primitives in DV quantum computation can be generalized to the hybrid CV-DV case.

Hybrid CV-DV Quantum Signal Processing (QSP)

Qubitization of bosonic mode:
$$e^{-i\frac{k}{2}\hat{x}\cdot\sigma_z} = \begin{bmatrix} e^{-i\frac{k}{2}\hat{x}} & W \\ e^{i\frac{k}{2}\hat{x}} \end{bmatrix} := W_z$$

$$e^{-i\frac{\lambda}{2}\hat{p}\cdot\sigma_{z}} = \begin{bmatrix} e^{-i\frac{\lambda}{2}\hat{p}} & \mathsf{v} \\ & e^{i\frac{\lambda}{2}\hat{p}} \end{bmatrix} \quad W_{z}^{(\lambda)}$$

• single-variable:

$$e^{i\phi_0\sigma_x}\prod_{j=1}^d W_z e^{i\phi_j\sigma_x} = \begin{bmatrix} F(w) & iG(w)\\ iG(w^{-1}) & F(w^{-1}) \end{bmatrix}$$

• Non-commutative bivariable (non-abelian): $e^{i\phi_0\sigma_x}\prod_{j=1}^d W_z^{(k)}e^{i\phi_j^{(k)}\sigma_x}W_z^{(\lambda)}e^{i\phi_j^{(\lambda)}\sigma_x} = \begin{bmatrix} F_d(w,v) & iG_d(w,v) \\ iG_d(v^{-1},w^{-1}) & F_d(v^{-1},w^{-1}) \end{bmatrix}$

Non-linear transformation of oscillator quadrature operators!

Linear Combination of Unitaries (hybrid oscillator-qubit)

Resource Estimation on Hybrid Processors

AMM 1: Qubit centric	AMM 2: Bosonic centric	AMM 3: Hybrid oscillator-qubit						
Long-range connectivity through auxiliary bosonic modes	Boson sampling and simulation of interacting boson models	Hybrid algorithms and simulation of physical models w/ spins and bosons						
Hybrid oscillator-qubit hardware layer								

Outline

- Why Need Quantum Computers Made with Oscillators + Qubits?
- Theoretical Challenges for Hybrid Quantum Processors
- What are AMM and ISA and Why are They Important?
- ISA and AMM for Hybrid Quantum Processors
- Algorithms and Example Applications
- Conclusion and What is Next?

Example I: Quantum Sensing and Single-Shot Decision-Making

Designing new protocols for efficient single-shot decision-making is not easy.

Non-linear transformation

- General quantum sensing tasks can be reformulated as a problem of choosing proper form for $f(\cdot)$
- Just need to design the "State Preparation" and "Signal Decoding" unitaries.
- However, in general, we do not know how to construct the above unitaries that can realize a given $f(\cdot)$.

Variation algorithms for interferometer optimization

KAUBRUEGGER et al. PHYS. REV. X 11, 041045 (2021)

- Can use variational algorithms for state prep and signal decoding
- Difficult to show provable speedup

What can we learn from classical decisionmaking? Decision = $\langle M \rangle = f(\beta)$

Non-linear transformation

 Classical signal processing (electrical engineering) routinely design *filters* (*f*) on *classical signals*:

 We know how to perform signal processing on quantum signals (hybrid CV-DV quantum signal processing)!

Quantum signal processing interferometry (QSPI)

arXiv:2311.13703

QSPI for Displacement Sensing

Duality between two transformations

Polynomial transformation of the bosonic quadrature operators Polynomial transformation of the sensing parameters!

$$\mathbb{P}(M = \downarrow |\beta) = \sum_{s=-d}^{d} c_s v^s \quad \begin{array}{l} S(\beta) = e^{i\beta\hat{p}} \\ v = e^{i(2k)\beta} \end{array}$$

What sensing tasks can this accomplish?

- Decision thresholding (step function)
- Band pass filter (window function)
- ...

Example II: Quantum Fourier Transform from Free-Evolution of an Oscillator

Quantum Fourier Transform (*n* qubits) $|\psi\rangle_Q = \sum_{\mathbf{x}} c_{\mathbf{x}} |\mathbf{x}\rangle_Q$ $U_{QFT} |\psi\rangle_Q = \sum_{\mathbf{x}} \left[\sum_{\mathbf{y}} \frac{1}{\sqrt{2^n}} c_{\mathbf{y}} e^{2\pi i x y/2^n} \right] |\mathbf{x}\rangle_Q$

Oscillator free-evolution is a Fourier transform!

 $F = e^{-i\frac{\pi}{2}\hat{n}}$ $\widehat{\boldsymbol{\chi}} \longrightarrow \widehat{\boldsymbol{\vartheta}}$

 $\hat{n} = \hat{a}^{\dagger} \hat{a}$: number operator \hat{x} : position operator, \hat{p} : momentum operator John Martyn MIT Physics Jasmine Sinanan-Singh, MIT physics Shraddha Singh, Yale Physics

Challenges

Need CV-DV state transfer protocol

 $U^{(n)}_{
m st}(\Delta)|\psi
angle_Q|0,\Delta
angle_B=|\mathbf{0}
angle_Q|\psi
angle_B$

- CV: <u>infinite</u> dimensional, is <u>aperiodic</u>, defined in (-∞, +∞)
- **DV**: <u>finite</u> dimensional, <u>periodic</u>, 4π pulse drives $|0\rangle \rightarrow |1\rangle$ and back to $|0\rangle$ twice
- Is this efficient?

CV-DV state transfer protocol

Single-variable hybrid CV-DV QSP

In preparation.

Fidelity:
$$1 - \mathcal{O}(n\epsilon) - \mathcal{O}(e^{-\mathcal{O}(\Delta^2/\sigma^2)})$$

Gate complexity: $\mathcal{O}(2^n \log(1/\epsilon))$

 ϵ : error for QSP polynomials σ : width of initial Gaussian Δ : spacing between Gaussians

 ${\mathcal X}$

Non-abelian hybrid CV-DV QSP

$$\mathcal{O}ig(\int_{-\infty}^{-\lambda(2^n-1)} dq |\psi(q)|^2 + \int_{\lambda(2^n-1)}^{\infty} dq |\psi(q)|^2 ig) \ \mathcal{O}ig(n ig) \quad V_j = e^{irac{\pi}{2^{j+1}\lambda} \hat{x} \hat{\sigma}_y^{(j)}}, \quad W_j = igg\{ e^{i\lambda 2^{j-1} \hat{p} \hat{\sigma}_x^{(j)}} & j < n, \ e^{-i\lambda 2^{j-1} \hat{p} \hat{\sigma}_x^{(j)}} & j = n, \end{matrix}$$

- Qubit QFT needs $O(n^2)$
- Caveat: may require a long time to implement, depending on experimental realizations such as strength of the driving fields.
- Quantum digital-analog sampling and interpolation!

Kitaev and Webb, arXiv:0801.0342 (2008). Hastrup et al., Phys. Rev. Lett. 128, 110503 (2022).

Example III: Resource estimation of photosynthesis on hybrid processors

Hamiltonian simulation of photosynthetic process (vibration + electronic)

- $H = \sum_{\gamma=1}^{N} H_0^{(\gamma)} + H_1^{(\gamma)} + H_2^{(\gamma)}$
- $H_0^{(\gamma)}=\!\!\omega_{\gamma_0}\gamma_0^\dagger\gamma_0+\omega_{\gamma_1}\gamma_1^\dagger\gamma_1-rac{\omega_{q\gamma_0}}{2}Z_{\gamma_0}$ $H_1^{(\gamma)} = -\frac{\chi_{\gamma_0}}{2}\gamma_0^{\dagger}\gamma_0 Z_{\gamma_0} - \frac{g_{cd,\gamma_0}}{2}(\gamma_0 + \gamma_0^{\dagger})Z_{\gamma_0}$ (Intra-chromophore interaction)
- $H_2^{(\gamma)}$: interactions (<u>non-Condon</u>) between chromophores

1D hardware connectivity

N-chromophore model: 2N transmons + 2N cavity

Simulating 0.01 pico-second of the physical dynamics:

One Trotter step = $N \times (360 BS + 368 CD + 3 SNAP)$

In preparation.

Instruction Set and Compilation Abstract Machine Models (AMMs) Phase-Space ISA $\{\mathrm{CD}(\beta), R_{\varphi}(\theta), \mathrm{BS}(\theta, \varphi)\}$ AMM 1: Qubit centric AMM 2: Bosonic centric AMM 3: Hybrid oscillator-qubit Universal hybrid control Long-range connectivity Boson sampling and simulation Hybrid algorithms and simulation of through auxiliary bosonic modes physical models w/ spins and bosons of interacting boson models $\left\{ \mathrm{SQR}(\vec{ heta}, \vec{arphi}), D(lpha), \mathrm{BS}(heta, arphi) \right\}$ Fock-Space ISA Hybrid oscillator-qubit hardware layer { $R_{\varphi}(\theta), \mathrm{JC}(\theta), \mathrm{BS}(\theta, \varphi)$ } Sideband ISA Hybrid quantum processor **Quantum Chemistry** Quantum sensing ▲ QSPI Response Function **Quantum Fourier Transform** Molecule A $F = e^{-i\frac{n}{2}\hat{n}}$ π $-\beta_{th}$ 0 β_{th} 2κ 2κ

Molecule B

Molecule C

What is Next?

- Compilation: Complete theory of non-Abelian QSP; more ISAs
- Architecture: parallelism (instruction, processor); stack memory, QRAM; memory hierarchy
- Hybrid quantum Arithmetic Logical Unit (ALU)

Electrical and Computer Engineering

NC STATE UNIVERSITY

COMPUTER SCIENCE

- Quantum Engineering and Simulation Theory (QuEST)
 - quantum algorithms and simulation
 - hybrid continuous-discretevariable QIP
 - quantum engineering
- Email: <u>yliu335@ncsu.edu</u>

Thanks!

Non-Condon Hamiltonian for a 1D Chromophore Chain

$$\begin{split} H &= \sum_{\gamma=1}^{N} H_{0}^{(\gamma)} + H_{1}^{(\gamma)} + H_{2}^{(\gamma)} \\ H_{0}^{(\gamma)} &= \omega_{\gamma_{0}} \gamma_{0}^{\dagger} \gamma_{0} + \omega_{\gamma_{1}} \gamma_{1}^{\dagger} \gamma_{1} - \frac{\omega_{q\gamma_{0}}}{2} Z_{\gamma_{0}} \\ H_{1}^{(\gamma)} &= -\frac{\chi_{\gamma_{0}}}{2} \gamma_{0}^{\dagger} \gamma_{0} Z_{\gamma_{0}} - \frac{g_{cd,\gamma_{0}}}{2} (\gamma_{0} + \gamma_{0}^{\dagger}) Z_{\gamma_{0}} \\ H_{2}^{(\gamma)} &= -g_{cd,\gamma_{1}} (\gamma_{1} + \gamma_{1}^{\dagger}) \frac{Z_{\gamma_{0}}}{2} \\ &+ \frac{g_{\gamma_{0},(\gamma-1)_{0}}}{2} (\sigma_{\gamma_{0}}^{+} \sigma_{(\gamma-1)_{0}}^{-} + h.c.) \\ &+ \frac{g_{\gamma_{0},(\gamma+1)_{0}}}{2} (\sigma_{\gamma_{0}}^{+} \sigma_{(\gamma-1)_{0}}^{-} + h.c.) \\ &+ \frac{g_{\gamma_{0},(\gamma-1)_{0},\gamma_{1}}}{2} (\sigma_{\gamma_{0}}^{+} \sigma_{(\gamma-1)_{0}}^{-} + h.c.) (\gamma_{1} + \gamma_{1}^{\dagger}) \\ &+ \frac{g_{\gamma_{0},(\gamma+1)_{0},\gamma_{1}}}{2} (\sigma_{\gamma_{0}}^{+} \sigma_{(\gamma+1)_{0}}^{-} + h.c.) (\gamma_{1} + \gamma_{1}^{\dagger}) \end{split}$$

Quantum Sensing – The need to go beyond parameter estimation

- Quantum sensing: leveraging quantum entanglement supposition to improve sensing capability
- **Parameter estimation:** the standard deviation for the parameter of interest:
- $\frac{1}{\sqrt{N}} \rightarrow \frac{1}{N}$ (N: time, number of probes, etc.) Central limit theorem Heisenberg limit (shot-noise behavior)

• Rare events need single-shot decision-making, e.g., gravitational wave detection:

- From estimation to decision?
- Why not directly perform decision-making using quantum protocols?

Why is it challenging to perform single-shot decision-making?

- Protocols for general sensing tasks beyond parameter estimation are rare, especially on bosonic modes.
 - <u>Easy</u>: only one bit of information is needed
 - <u>Challenging</u>: global information about entire phase space is needed

Quantifying Binary Decision Quality

Nonlinear transformation of the sensing parameter in single-shot limit.

Qubit measurement probability vs. β

✓ Step function will be ideal (red)

- ✓ Actual qubit response function (black)
- ✓ Minimize error decision probability (shaded)

How to quantify decision quality:

$$p_{
m err}(eta_{
m th},k) = rac{k}{\pi} \int_{-rac{\pi}{2k}}^{rac{\pi}{2k}} |P_{
m approx}(eta) - P_{
m ideal}(eta)|deta|$$

 $= p_{
m err,FN}(eta_{
m th}) + p_{
m err,FP}(eta_{
m th}).$

Heisenberg scaling on decision error (single shot)
$$p_{
m err} \propto rac{1}{kd}\log(d)$$
 d is the circuit depth

Applications - Quantum Simulation

Eleanor Crane (MIT Postdoc)

- Lattice Gauge Theory
- $egin{array}{rcl} H &=& H_0 + H_1 \ H_0 &=& -J_0 \sum_i a_i^\dagger Z_i a_{i+1} + {
 m h.c.} \ H_1 &=& -J_1 \sum_i X_i, \end{array}$

State preparation; Hamiltonian simulation; observable measurement

Rabi Hamiltonian

$$H = \hbar \omega_m a^{\dagger} a + \hbar \omega_b \sigma^z + \frac{2\lambda}{\sqrt{N}} \left(a + a^{\dagger}\right) \sigma^x$$

$$H = -J \sum_{\langle ij|ij \rangle} \left(b_i^{\dagger} b_j + \text{h.c.} \right) + \frac{U}{2} \sum_i n_i \left(n_i - 1 \right) - \mu \sum_i n_i$$

Spin Systems

$$S = [a^{\dagger}a + b^{\dagger}b]/2 = N/2$$

$$S^{z} = [a^{\dagger}a - b^{\dagger}b]/2 = [n_{a} - n_{b}]/2$$

$$S^{x} = [a^{\dagger}b + ab^{\dagger}]/2$$

$$S^{y} = -i[a^{\dagger}b - ab^{\dagger}]/2.$$
(Quant

Fermionic Matter (quantum chemistry, materials)

$$f_p^{\dagger} f_q = \sigma_p^+ Z Z \dots Z \sigma_q^-$$

$$f_p^{\dagger} f_q f_r^{\dagger} f_s = \cdots$$

- classical vs. quantum
 - qubit-only vs. qubit-oscillator

- Rigorous resource estimation
- Assessing quantum advantage

QEC and Logical ISA

Optional QEC

Physical Layer

ISA for Cat state prep.

Shraddha Singh (Yale graduate student)

Alec Eickbusch (Yale graduate student)