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Qubit

[𝑿, 𝒀] = 𝟐𝒊𝒁

[ෝ𝒙, ෝ𝒑] = 𝒊

● Bosonic modes are ubiquitous:

o Vibrational modes of trapped ions 

or molecules 

o Phonons in solids

o Quantum optics or fields

• Infinite-dimensional (in principle)

Bosonic modes 
(quantum oscillators) • Fock state, energy eigenstate

• Creation annihilation operator

• Coherent state

• The physics of oscillators are well known;

• Their computational power is much less well-

known
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Why need quantum computers 
made with oscillators + qubits?

• Bosonic matter (vibrations, phonons, 
quantum fields,…) is difficult to 
simulate on qubit-based computers.

• Many problems are continuous in 
nature: optimization…

• Control: cQED cavity, trapped 
ions, boson sampling

• Bosonic codes

• Spin, boson, fermion
• Large dimensionality, 

resource efficient qudits.

Theoretical needs Experimental advancement Application driven

Phys. Rev. A 104, 032605 (2021).

Phys. Rev. A 92, 040303(R) (2015)

SNAP gate universal control

Qubit-oscillator qudits

Nature Physics 18, 1464–1469 (2022).

ECD Universal Control

Nature 616, 50–55 (2023). Nature 616, 56–60 (2023). 

Bosonic Codes Break-even



• Need an abstract 

theoretical 

model for the 

hybrid QC

• Need universal 

instructions to 

program

Theoretical challenges of oscillator-
qubit quantum processors

• Universal control of 
oscillators

• Hybridize qubits and 
oscillators

• Beyond physical 
layer:

• How to program?
• How to reason about 

their computational 
power?

• How to perform 
resource estimation?

Quantum Oscillator

𝑥

𝑝

Qubit

[𝑿, 𝒀] = 𝟐𝒊𝒁

A hybrid quantum computer

[ෝ𝒙, ෝ𝒑] = 𝒊
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What are AMM and ISA?

• AMM: Abstract Machine Model

Turing machine

[Hennessy and Patterson. Computer 
Architecture: A Quantitative 
Approach, 5th Edition.]

Finite automata

• ISA: Instruction Set Architecture

How about for quantum 
computers?

AMM for classical computing machines Instructions for EDSAC

Instructions for 80x86



AMM and ISA: Why are They Important?
• Architecture stack for classical and qubit-based quantum computers

Beverland et al. Assessing requirements to scale to practical quantum advantage. (Microsoft, 2022)

• Instruction Set Architecture 
(ISA) bridges the high-level 
applications and low-level 
physical/device layers.

AMM and ISA for hybrid 

oscillator-qubit 

processors are unknown!

Bravyi et al. J. Appl. Phys. 132, 160902 (2022). IBM.

Lee et al. (2023)

[arXiv:2308.12352]

Allows 
quantitative 
resource 
estimation to 
assess quantum 
advantage.



Why is Making ISA and AMM Difficult for 
Hybrid Processors?

• Need a physical 
architecture

• Need a model for error 
correction

• Need a universal gate set

• Need effective 
compilation methods

A hybrid quantum computer
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Physical Layout of a Hybrid Processor

CV: continuous 
variable
DV: discrete 
variable



Hybrid CV-DV quantum processor stack

• Capability of running both DV and 
CV quantum algorithms

• Optional QEC allows both DV 
fault-tolerance and CV 
hardware-efficient 
computation



Gates – The Key to Programmability

Oscillator only gates: 

Hybrid gates: 

Control flow: feedback, variational algorithms; modular architectures, 
distributed hybrid processor; autonomous error correction

Benchmarking: Certifying the gates are 
working as intended

Wigner function or process tomography via heterodyne detection

No randomized benchmarking

Quantifying complexity of measurement, computation, sampling, post-
processing

Conditional displacement

• Hybrid quantum processors allow us to define useful quantum gates.

• oscillator-only gates

• hybrid entangling 
gates



Hybrid Universal Control

• Qubit universal control

• Oscillator universal control

• Hybrid universal control

𝑋, 𝑌, 𝑍

• Qubit universal gate sets are well-known, while hybrid universal gate 

sets are less established.

polynomial

Four independent polynomials



Universal Instruction Sets

• Simple rotation, 

translation, squeeze 

of phase space 

distribution.

• Can achieve non-

Gaussian 

operations on m 

oscillators!

• Can achieve fully 

universal control on 

an  arbitrary set of n 

qubits and m 

oscillators!



Compilation Methods

Analytical compilation of multi-qubit entangling 

gates by leveraging geometric phase

Kevin Smith,
Brook Haven 
National Lab

• Full sets of analytical + numerical compilation methods 

are established for hybrid DV-CV quantum algorithms.

Single qubit-oscillator unitaries are the key to unleash CV 

computational power! 

4 CD gates,
4 BS gates.



Single qubit-oscillator compilation

Hybrid CV-DV 

Quantum Signal Processing (QSP)

Qubitization of 
bosonic mode:

Linear Combination of Unitaries
(hybrid oscillator-qubit)

where

• Algorithmic primitives in DV quantum computation can be generalized to the hybrid CV-DV case.

w

v

Non-linear transformation of oscillator quadrature operators!

• single-variable:

• Non-commutative bivariable (non-abelian):



Resource Estimation on Hybrid Processors



Outline

• Why Need Quantum Computers Made with Oscillators + Qubits?

• Theoretical Challenges for Hybrid Quantum Processors

• What are AMM and ISA and Why are They Important?

• ISA and AMM for Hybrid Quantum Processors

• Algorithms and Example Applications

• Conclusion and What is Next?



Example I: Quantum Sensing and Single-
Shot Decision-Making

The most general single-shot decision-making protocol

Decision = 𝑀 = 𝑓(𝛽)

• General quantum sensing tasks can be reformulated as 

a problem of choosing proper form for 𝑓 ∙

• Just need to design the “State Preparation” and “Signal 

Decoding” unitaries.

• However, in general, we do not know how to construct 
the above unitaries that can realize a given 𝑓 ∙ .

Non-linear transformation

KAUBRUEGGER et al. PHYS. REV. X 11, 041045 (2021) 

Variation algorithms for interferometer optimization 

2
1

Designing new protocols for efficient single-shot decision-making is not easy.

• Can use variational algorithms for state 

prep and signal decoding

• Difficult to show provable speedup



What can we learn from classical decision-
making?

Decision = 𝑀 = 𝑓(𝛽)
Non-linear transformation

• Classical signal processing (electrical engineering) 

routinely design filters (𝑓) on classical signals:
• We know how to perform signal processing on 

quantum signals (hybrid CV-DV quantum signal 

processing)!

2
2

Quantum signal processing interferometry (QSPI)

arXiv:2311.13703



QSPI for Displacement Sensing
What sensing tasks can this accomplish?

• Decision thresholding (step function)

• Band pass filter (window function)

• …

Polynomial transformation 
of the bosonic quadrature 
operators 

Polynomial transformation 
of the sensing parameters!

Duality between two transformations
Qubit measurement probability vs. 𝜷

FN: false-negative error
FP: false-positive error arXiv:2311.13703



Example II: Quantum Fourier Transform 
from Free-Evolution of an Oscillator

Quantum Fourier Transform

(n qubits)

Oscillator free-evolution is a Fourier transform!

ෝ𝒙     → ෝ𝒑
𝐹 = 𝑒−𝑖

𝜋
2

ො𝑛

John Martyn MIT Physics
Jasmine Sinanan-Singh, MIT physics

Shraddha Singh, Yale Physics

ො𝑛 = ො𝑎† ො𝑎: number operator
ෝ𝒙 : position operator,   ෝ𝒑: momentum operator

• Need CV-DV state transfer protocol

• CV: infinite dimensional, is aperiodic, 
defined in (−∞, +∞) 

• DV: finite dimensional, periodic, 4𝜋 

pulse drives ۧ|0 ۧ → |1  and back to ۧ|0  

twice

• Is this efficient?

Challenges 



CV-DV state transfer protocol
Single-variable hybrid CV-DV QSP Non-abelian hybrid CV-DV QSP

Fidelity: 

Gate complexity: 

• Qubit QFT needs O(𝑛2)

• Caveat: may require a long time to implement, 

depending on experimental realizations such 

as strength of the driving fields.

𝑥 Kitaev and Webb, arXiv:0801.0342 (2008).
Hastrup et al., Phys. Rev. Lett. 128, 110503 (2022). 

• Quantum digital-analog sampling and interpolation! 

In preparation.

𝜖: error for QSP 
polynomials
𝜎: width of initial 
Gaussian
∆: spacing between 
Gaussians



Example III: Resource estimation of 
photosynthesis on hybrid processors
Hamiltonian simulation of photosynthetic process (vibration + electronic)

One Trotter step = 𝑵 × (360 BS + 368 CD + 3 SNAP)

• 1D hardware connectivity

: interactions (non-Condon) between chromophores

𝑵-chromophore model: 𝟐𝑵 transmons + 𝟐𝑵 cavity

• Simulating 0.01 pico-second of the physical dynamics:

In preparation.

(Intra-chromophore interaction)



Conclusion

Hybrid quantum processor

Abstract Machine Models (AMMs) Instruction Set and Compilation

Quantum sensing

Quantum Fourier Transform

Quantum Chemistry



What is Next?
• Compilation: Complete theory of non-Abelian QSP; more ISAs

• Architecture: parallelism (instruction, processor); stack memory, QRAM; 
memory hierarchy 

• Hybrid quantum Arithmetic Logical Unit (ALU)

Early fault-
tolerance

Chemistry

Materials

Digital-analog signal processing
Metrology/SensingProgramming 

languages

hybrid quantum processorDV-CV 
Variational Alg.



• Quantum Engineering and Simulation 

Theory (QuEST)

• quantum algorithms and 

simulation

• hybrid continuous-discrete-

variable QIP

• quantum engineering

• Email: yliu335@ncsu.edu

Thanks!

29

mailto:yuanliu@mit.edu


Non-Condon Hamiltonian for a 1D 
Chromophore Chain



• Rare events need single-shot decision-making, e.g., 
gravitational wave detection:

• From estimation to decision? 
• Why not directly perform decision-making using 

quantum protocols?

Quantum Sensing – The need to go beyond 
parameter estimation

• Quantum sensing: leveraging quantum 
entanglement supposition to improve sensing 
capability

• Parameter estimation: the standard deviation 
for the parameter of interest:

𝟏

𝑵
→

𝟏

𝑵

Central limit theorem
(shot-noise behavior)

(N: time, number of probes, etc.)

Heisenberg limit

Bollinger et al., Phys. Rev. A 54, 4649 (1996)
𝑥 , ∆𝑥 U(x) 0 or 1?

3
1



Why is it challenging to perform single-shot 
decision-making?

Zhou et al., Nature Comm. 9.1 (2018): 78.

Huang et al., Phys. Rev. Lett. 130, 200403 (2023) 

• Existing iterative protocols are challenged in the single-shot limit 

• Protocols for general sensing tasks beyond parameter estimation are rare, especially on bosonic modes.

•  Easy: only one bit of information is needed

• Challenging: global information about entire phase space is needed

Sugiura et al., arXiv:2304.02053 (2023). 

Dong et al., arXiv:2209.11207 (2022).

Rossi et al., Phys. Rev. A 105, 032401 (2022)



Quantifying Binary Decision Quality

✓ Step function will be ideal (red)

✓ Actual qubit response function (black)

✓Minimize error decision probability (shaded)

Nonlinear transformation of the sensing parameter in single-shot limit.

Qubit measurement probability vs. 𝜷
How to quantify decision quality:

FN: false-negative error
FP: false-positive error

d is the circuit depth

Heisenberg scaling on decision error (single shot)

QSPI Response 
Function(𝛽)

33



Applications - Quantum Simulation 
• State preparation; Hamiltonian simulation; observable measurement

Rabi Hamiltonian

Bose Hubbard

Spin SystemsLattice Gauge Theory
Fermionic Matter

(quantum chemistry, materials)

𝑓𝑝
†𝑓𝑞 = 𝜎𝑝

+𝑍𝑍 … 𝑍𝜎𝑞
−

𝑓𝑝
†𝑓𝑞 𝑓𝑟

†𝑓𝑠 = ⋯

Eleanor Crane
(MIT Postdoc)

• Rigorous resource estimation

• Assessing quantum advantage

• classical vs. quantum

• qubit-only vs. qubit-oscillator 



QEC and Logical ISA

ISA for Cat state prep.

Alec Eickbusch
(Yale graduate 

student)

Shraddha Singh
(Yale graduate 

student)

Optional QEC
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