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What is this tutorial about?

We know qubits are useful but what about oscillators?  

[Superconducting circuits, trapped ions, Rydberg atom arrays, Photons]

1) Can we take advantage of their large Hilbert space?  

2) Do they offer hardware efficiency in various tasks including 

quantum simulation?

3) Can we do quantum error correction with bosonic modes?  



3

What is this tutorial about?

We know qubits are useful but what about oscillators?  

[Superconducting circuits, trapped ions, Rydberg atom arrays, Photons]

1) Can we take advantage of their large Hilbert space? YES

2) Do they offer hardware efficiency in various tasks including 

quantum simulation? YES

3) Can we do quantum error correction with bosonic modes? YES
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CV: continuous-variable

DV: discrete-variable





PART I - Physics and foundations of hybrid 
CV-DV quantum computation

• Continuous-variable (CV) states, operators, representations

• Universal CV-DV quantum computation

• Gaussian (Clifford), non-Gaussian (magic), and hybrid CV-

DV gates

• Measurement

• Experimental realizations: superconducting and trapped 

ions



Continuous-Variable Quantum Computation 101
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Cool it down to very low temperature
“quantize”

Qubit Q. Oscillator

Bosonic Quantum States Bosonic Quantum Gates

+ gates to Entangle two oscillators

Single-oscillator gate

Recall: 

is a function of 
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Two views of the oscillator Hilbert space:

(a) Discrete but countably infinite Fock basis:

(b) Continuous position/momentum basis:
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Hierarchy of Continuous-Variable (CV) States:

Level 0: Gaussian states
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Hierarchy of Continuous-Variable (CV) States:

Level 0: Gaussian states
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Visualizing flows in phase space can be 

useful:



Q: Is continuous-variable QC the same as qudit-

based QC?

No, because CVs are technically infinite-dimension, 

only when truncate will be finite-dimension.

Q: What if we truncate the oscillator to d-levels?

No, because bosonic statistics can be missing.

Sqrt(m) is hides the hardness 

/ advantages. 
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Hierarchy of Oscillator Gate Operations

(view any unitary as Hamiltonian evolution)
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CV Analog to the DV Pauli Group
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Phase space translations do not commute

Phase space has constant Berry curvature

Baker–Campbell–Hausdorff formula:

Equivalently:

Proof:

Can motivates the study of CV stabilizer QEC codes, e.g., arXiv:2411.04993
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Displacements are the CV analog of the Paulis.

What is the CV analog of the DV Clifford 

Group?
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Quadratic Hamiltonians generate phase space
rotations and scale changes (squeezing)
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Quadratic Hamiltonians generate maps 

of displacements to displacements

Recall:

DV Clifford operations C map the Pauli group 

to itself

What CV operations map displacements to 

displacements?

†CPC P= 

† * ˆ ˆ2 [ ]

ˆ ˆ2 [ ]†

2 2

( )

( ) ( )

I R

I R

i x pa a

i x p

D e

D U D

e

U e

  

 



 

−−

− 
=

= =

=

rotation              squeezing            squeezing

Exercise: 
Show [𝒉𝟐, 𝒉𝟏] = 𝒉𝟏

′ , [𝒉𝟐, [𝒉𝟐, 𝒉𝟏]] = 𝒉𝟏
′′, [𝒉𝟐, 𝒉𝟏]𝒏 = 𝒉𝟏

′′′
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Quadratic Hamiltonians are CV 

analogs to generators of the 

Clifford group

2-qubit DV Clifford operations like 

CNOT can create entanglement:
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CV two-mode squeezing generates 

entanglement:

How to see this?

Taylor expansion, and re-
collecting all terms for fixed n. 
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DV Clifford circuits create entanglement 

but are easy to simulate classically by 

tracking stabilizer evolution

CV ‘Clifford’ circuits map Gaussian states 

to Gaussian states but are easy to 

simulate classically by following evolution 

of mean and covariance matrix of the 

Gaussians.

Non-Clifford DV gates (e.g., T gates) 

produce ‘magic’ (i.e., non-stabilizerness) 

needed to violate Bell inequalities and 

achieve quantum advantage.

Non-Clifford CV gates (e.g., generated by 

cubic Hamiltonians) produce ‘non-

Gaussianity’ and ‘Wigner negativity’ required 

to achieve quantum advantage.

It is clear what ‘non-Gaussianity’ is. What 

about ‘Wigner negativity’?



Deep Dive on Hybrid Gates:

For real 𝜷

Why are these two definitions equivalent?
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Deep Dive on Hybrid Gates:

For real 𝜷

Why are these two definitions equivalent?

− 𝛼 𝑘 = −𝛼 𝑘 for odd k



How does displacement gate work?

Note:

This means displacement shifts the 

position by Re(𝛼), and shift 
momentum by Im(𝛼). 

Cat state Wigner function.

x

p



x

p



Analog of the SWAP on 

oscillators:



Generate entanglement under Fock basis 

between two modes:

Bloch-Messiah Decomposition

Any 2N ×2N real symplectic matrix M can be

decomposed into the form
𝑀 = 𝑶𝟏 𝐙 𝑶𝟐

• Allows decomposition of arbitrary two-mode 

gate into number preserving and single-mode 
squeezing.



This allows quantum 

arithmetic on continuous-

variables!

Generate position correlated 

(entangled) states.
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CV-DV comparison

(DV) (CV)
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State Tomography for CV (bosonic) modes

Three equivalent (up to Fourier transforms) representations
arranged in order of descending experimental difficulty

• All three provide complete 
information about the 
quantum state.

• Integration of Wigner function 
over one variable gives 
probability density (positive).  
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State Tomography for CV (bosonic) modes

Three equivalent (up to Fourier transforms) representations
arranged in order of descending experimental difficulty

x

p

Wigner 

negativity

• Wigner negativity causes rapid sign oscillations in 

the quasi-probability distribution, making it difficult 

to simulate by classical Monte Carlo to obtain 

expectation values of observables:                 .  

• Cannot have true phase space probability 

distribution because                . 

ˆ( ˆ, )O x p

ˆ ˆ, ] 0[x p 
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Wigner Function Measurement:

Measure ‘displaced parity’ via phase kickback on controlled parity gate
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Controlled parity gate is generated by the 
dispersive coupling between ancilla and 

oscillator (not natively available in ion traps).
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Characteristic Function Measurement:

Measure ‘displacement operator’ via phase kickback on controlled 

displacement gate

Controlled displacement gate 

(also natively available in ion traps)
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What about experimental realizations?



Cavity Quantum Electrodynamics with Superconducting Circuits

Figure by courtesy of Prof. Chen Wang (UMass Amherst)

Coupling strength and frequency is set once fabricated.



Native Qubit-Cavity Operations

• The native qubit-controlled cavity phase gate cannot be turned off !

• No real idling gate.



Trapped Ion Quantum Computer

Scientific Reports 4, 3589 (2014).

Qubit or qudit -> Ion

Oscillators: Ions’ collective 
motion / vibration

• Qubit-oscillator 
interaction can be 

switched on-off by laser
• One qubit can couple to 

many modes

Readout / Measurement

(fluorescence of ions)

Nature Reviews Materials 6, 892–905 (2021).

Jaynes-Cummings Gate

https://www.nature.com/srep
https://www.nature.com/natrevmats


Oscillator-Only Gates



Hybrid Oscillator-Qubit Gates



PART II - Instruction Set Architectures, 
Abstract Machine Models, and Compilation 
Techniques

• AMMs: How to remove some physical-level details to construct 

abstract machine models for hybrid CV-DV quantum processors?

• ISAs: What is a minimal set of gates that are universal?

• Synthesis and compilation methods: how to compose the gates 

together to achieve a desired calculation?

• Bosonic QEC
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arXiv: 2407.10381

[3D resonator + 1 transmon]
local universal control

Minimal cross-talk

High-fidelity parallelizable 
bosonic communication 
SWAP network

c.f. ion-trap ‘all-to-all’

3 distinct AMMs 
(abstract machine models)
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arXiv: 2407.10381

[3D resonator + 1 transmon]
local universal control

Minimal cross-talk

High-fidelity parallelizable 
bosonic communication 
SWAP network

c.f. ion-trap ‘all-to-all’

3 distinct AMMs 
(abstract machine models)

High on-off ratio (microwave activated) 
beam splitters between detuned 

cavities

No direct qubit-qubit coupling
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arXiv: 2407.10381

[3D resonator + 1 transmon]
local universal control

Minimal cross-talk

High-fidelity parallelizable 
bosonic communication 
SWAP network

c.f. ion-trap ‘all-to-all’

3 distinct AMMs 
(abstract machine models)



Three AMMs and Their Characteristics
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Eickbusch et al., Nat. Phys. 
(2022)

Phase-space instruction set

• Conditional displacement

• Single qubit rotations

• Beamsplitters

Heeres et al., PRL (2015)

Fock-space instruction set

• Photon number-selective qubit rotations

• Unconditional displacements

• Beamsplitters

Trapped ions and Circuit QED Circuit QED

‘spin dependent forces on oscillator’ ‘photon number dependent qubit rotations’
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Short course on quantum control theory

A two-level system (qubit) is controllable with classical drives
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[ , ] 2
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A quantum system is controllable iff the Lie algebra generated by the available 
controls spans the space of operators on the Hilbert space, i.e.,  is full-rank.
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A quantum harmonic oscillator is not controllable with classical drives

0

1

0h

0

†

0

0( )

Interaction picture ( ) rotati

r

ng wave approximation:

V(t)

( ) cos( ) ( )sin( ) ( )

0

ˆ ˆ~ ( ) ( )

ˆ ˆwhere  and  are phase space coordinates in the rotating frame

ˆ ˆ[ , ]

Operato

x y

x y

V t t t t a a

t x t p

x p

t

H

x p i

  + + 

+

=

=

→

h

ò ò

ò ò

 algebra closes. 

0

†

0H a a= h

2

3

0h

0h

Classical drives can displace/boost the oscillator (e.g.,                              )
to create coherent states, but cannot create, e.g., Fock states.

classical
ˆ ˆx x + →
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†

ˆ

Phase-space Instruction Set (trapped ions and cQED)

             [Dispersive]

With drives on the cavity and qubit we can generate 
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In order to fully control a harmonic oscillator, we require 
an anharmonic object (e.g., a qubit) as an auxiliary controller.
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2 2

ˆ ˆ ˆˆ ˆ ˆ, ] ( )  (conditional squeezing!)
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Operator algebra does  close  universal control
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[

[ [

not

)

xX pY i xp px Z

xX xX pY x p xp Yx px

= +

= + +



te sums of operators

and products (i.e., commutators) of operators generate universal (effective) Hamiltonian 

generators of unitaries:

ˆ ˆ ˆ ˆH= ( , ) ( , )        with    ( , , )x p h x p X Y Z   + =
r r r

Arbitrary polynomials of bounded order



Instruction Sets for Oscillator and Hybrid Oscillator-Qubit Universal Control
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ISA Example: (Echoed) Controlled-Displacement + Qubit Rotations

Fast Universal Control of an Oscillator with Weak Dispersive 
Coupling to a Qubit, A. Eickbusch et al. (Devoret Lab)                      

Nature Physics (2022)

cos sin
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x yi

R e


 

 
 − +
 

=

Qubit Rotation Gate

Circuit depth 
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Conditional Displacement Gate

ˆ ˆexp x y ZitD x p


=  − − +
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−

0 0

1 1

cECD x= D

https://www.nature.com/nphys
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(Echoed) Controlled-Displacement ISA:

Phase Space ‘Portraits’ of 
Photon Fock State Generation

Eickbusch et al. (Devoret Lab) Nature Physics (2022)

Numerically optimized circuits to solve the disentangling 
problem and create correct unitary.

positio
n

m
o

m
en

tu
m

This is 
data….

Note Strong Wigner negativity

https://www.nature.com/nphys
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(Echoed) Controlled-Displacement ISA: Fast Universal Control of an Oscillator with Weak 
Dispersive Coupling to a Qubit, A. Eickbusch et al. (Devoret 
Lab) Nature Physics (2022)

Squeezed states

Binomial QEC code word states GKP QEC code word states

https://www.nature.com/nphys
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Numerically optimized gate sequences are 
highly expressive (efficient )

but 
incomprehensible.



57

Hybrid CV-DV Architecture

High-level instructions

Low-level instructions

Connectivity, QEC options,

Error model, …

Are there ways to analytically

synthesize oscillator-oscillator and 

multi-qubit gates?
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Oscillator-mediated multi-qubit 

gates (ion traps and circuit QED)

Displacement of oscillator:

The key ingredient:
Phase space displacements do not commute

Qubit-controlled displacement:
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2Example qubit-qubit entangling gate: ( )
i Z Z
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2Example qubit-qubit entangling gate: ( )
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2Example qubit-qubit entangling gate: ( )
i Z Z

ZZ e



− 

=

x

p

Cavity 2, Qubit 2 Cavity 1, Qubit 1

Beam

Splitter
x

p

2
1 22

2 2

2

1 1

12 12 1

= )CD ( ) )

S

CD (CD ( CD (

WAPe SWA

)

Not :   CD CD P

i Z Z
e i i

    − 
− ++ −

=

1 2 1'Movie' for the case Z Z= = +



63
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2Example qubit-qubit entangling gate: ( )
i Z Z
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2Example qubit-qubit entangling gate: ( )
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2Example qubit-qubit entangling gate: ( )
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WAPe SWA

)

Not :   CD CD P

i Z Z
e i i

    − 
− ++ −

=

1 2 1'Movie' for the case Z Z= = +
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2Example qubit-qubit entangling gate: ( )
i Z Z

ZZ e



− 

=

x

p

Cavity 2, Qubit 2 Cavity 1, Qubit 1

Beam

Splitter
x

p

2
1 22

2 2

2

1 1

12 12 1

= )CD ( ) )

S

CD (CD ( CD (

WAPe SWA

)

Not :   CD CD P

i Z Z
e i i

    − 
− ++ −

=

1 2 1'Movie' for the case Z Z= = +
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2Example qubit-qubit entangling gate: ( )
i Z Z

ZZ e



− 

=

x

p

Cavity 2, Qubit 2 Cavity 1, Qubit 1

Beam

Splitter
x

p

2
1 22

2 2

2

1 1

12 12 1

= )CD ( ) )

S

CD (CD ( CD (

WAPe SWA

)

Not :   CD CD P

i Z Z
e i i

    − 
− ++ −

=

No dependence on oscillator state!

(Disregarding photon loss, cavity self-Kerr)

Qubits 1 and 2 can be separated by arbitrary distance

High fidelity SWAPS F=0.999 (0.9998 with post-selection on 

photon loss)
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Details in arXiv: 2407.10381

Arbitrary Pauli-Weight Multi-Qubit 

Gates
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Local Alternating Quantum Classical Computations



Key to unleash 

Hybrid CV-DV 

computational 

power!



Two Representations of Hybrid CV-DV Operators

• Hermitian Generator Picture

• Unitary Picture

: generators for n-qubit 

system (e.g., Pauli)

(n qubits, m oscillators)

e.g., single qubit-oscillator:



Origins of QSP: Robust Spin 

Rotation Control in NMR

Drive pulse amplitudeDrive pulse phase

Composite pulses:

Error No error on 𝜑

roughly constant in time

Error suppression!

yx

z



Origins of QSP: Robust Spin 

Rotation Control in NMR

Drive pulse amplitudeDrive pulse phase

Error No error on 𝜑

roughly constant in time

Error suppression!

Also works for 

regions around 

𝜃!

Composite pulses:



Formal Exhibition of QSP

Low and Chuang. PRL 118, 010501 
(2017).

Quantum Signal Processing
(qubit)

Composite Pulses

More generalizations: QSVT, GQSP, M-QSP, SU(N), SU(1,1), non-
linear Fourier transform, …

𝑅𝑧(−𝜑1)𝑅𝑥(2𝜃)𝑅𝑧(𝜑1)

Degree-9 QSP

Signal operator Signal processing operator

Given: Block-encoding of 𝑎

such 

that

Poly. transformation of 𝑎

(expressivity)

(parity constraint)(unitarity)

If and only if:



From DV to Hybrid CV-DV QSP

Single oscillator-qubit Universal Control

Is it possible to promote 𝜽 from a noisy classical variable to a 
quantum operator 𝜽 such as ො𝑥 acting on an oscillator?

Composite Pulses

𝜽 → 𝟏 + 𝝐 𝜽
Noisy classical variable

YES!



Hybrid CV-DV Quantum Signal Processing

Two views of the oscillator-qubit 

gate

2) Oscillator-dependent qubit rotation

Quantum fluctuation from the oscillator 

position plays the role of “noise” on 𝜽!

Example: deterministic preparation of 

cat state

ۧ| + ۧ| −

ۧ| − 𝛼 osc ۧ|𝛼 osc

Need to disentangle:

1) Qubit-dependent momentum boost

Provides a block-encoding of ො𝑥 or Ƹ𝑝! 



Hybrid CV-DV Quantum Signal Processing

Two views of the oscillator-qubit 

gate

2) Oscillator-dependent qubit rotation

Quantum fluctuation from the oscillator 

position plays the role of “noise” on 𝜽!

Example: deterministic preparation of 

cat state

ۧ| + ۧ| −

ۧ| − 𝛼 osc ۧ|𝛼 osc

Need to disentangle:

1) Qubit-dependent momentum boost

Provides a block-encoding of ො𝑥 or Ƹ𝑝! 

Error proportional 
to quantum 

fluctuations



• Qubitization of 
bosonic mode:

• Phase space filters! 
• Many generalizations apply: 

GQSP, QSVT…

• Single-variate (1D filter): • Non-abelian bivariate (2D filter):

Formal Exhibition of Hybrid CV-DV QSP

Block-encoding of x-
quadrature

Block-encoding of p-
quadrature

and satisfy similar constraints as qubit QSP.



Periodicity of Hybrid CV-DV QSP Transform

𝑇𝑥 𝑇𝑥 𝑇𝑥

x

f(x), g(x)

80

Approximate a function within a unit cell!

𝑇𝑥 =
2𝜋

𝜅



Arbitrarily Accurate Cat State Preparation

Fidelity comparison between BB190

and non-abelian QSP

Non-abelian QSP:

• Can this be systematically improved? Yes!



Compilation Schemes for Bosonic QEC

• Codeword stabilization:

• Logical single-qubit operation:

• Entangling two logical bosonic qubits:

• Logical readout:

Entangling the oscillator logical state with ancilla qubit
+ measure qubit. e.g.,

How to get entangling operation for the cat code?
- Simply reverse the disentangling process. 

Re-entangle: 

Displace to repump 
energy: 

Unentangle: 

Photon loss will shrink the 

cat size, need to repump 

energy.

More applications to bosonic QEC: arXiv:2504.19992.



Linear Combination of Unitaries

Linear Combination of CV Unitaries
(DV as ancilla)

Where                                                       for

• Example of LCU to Prepare Cat State

Linear Combination of DV Unitaries
(CV as ancilla)

Also see Quantum 8, 1496 (2024).



Trotter and Product Formulas

• BCH:

• Compilation of Polynomial Product:

• Example:

Also see C. Kang, M.B. Soley et al., Kang, Christopher, et al. Journal of Physics A: Mathematical and Theoretical (2025).

• Commutation between Pauli gives 
product of oscillator Hamiltonians.

• Operator norm being unbounded, but 
norm with respect to finite-energy 

states is still bounded.



Resource Estimation on Hybrid Processors



Wednesday, June 25, Session 8B: Quantum III

11:00 AM – 11:20 AM
Genesis: A Compiler for Hamiltonian Simulation on Hybrid CV-DV Quantum Computers
Zihan Chen, Jiakang Li, Minghao Guo, Henry Chen, Zirui Li, Joel Bierman, Yipeng Huang, Huiyang Zhou, Yuan 
Liu, Eddy Z. Zhang

https://github.com/ruadapt/Genesis-CVDV-Compiler



PART III - Algorithms and 
Applications

• Application I: CV-DV State Transfer

• Application II: Quantum Fourier 

Transform

• Other Applications

• What useful things can we do? Are there 

advantages?



Application I: DV-CV State Transfer

• Depends on how DV computational basis is mapped to CV

• Better to be deterministic

• Need to work for arbitrary states

Local quantum computation and quantum networksLogical state preparation



State Transfer from Single-variable QSP

Fidelity: 

Gate complexity: 

𝒏: number of qubits         𝝐: error for QSP polynomials

𝝈: width of initial Gaussian     ∆: spacing between 

Gaussians

Time complexity: 

𝜓(𝑥)

𝑥

𝚫

n
MSB

MSB-1

MSB-2



State Transfer from Single-variable QSP

n
MSB

MSB-1

MSB-2

x

2𝑛−1Δ



State Transfer from Single-variable QSP

n
MSB

MSB-1

MSB-2

x

2𝑛−1Δ

2𝑛−2Δ 2𝑛−2Δ 2𝑛−2Δ 2𝑛−2Δ



State Transfer from Single-variable QSP

Fidelity: 

Gate complexity: 

𝒏: number of qubits         𝝐: error for QSP polynomials

𝝈: width of initial Gaussian     ∆: spacing between 

Gaussians

Time complexity: 

𝜓(𝑥)

𝑥

𝚫

n
MSB

MSB-1

MSB-2



State Transfer from Non-abelian QSP

May or may not be long, depending 
on strength of the drive fields

Hastrup et al., Phys. Rev. Lett. 128, 110503 (2022).  

Fidelity:

n

Gate complexity: 

Time complexity: 

YL et al., arXiv:2408.14729.



d=60 with δ=0.2, ∆=1

𝜎 = 𝑒−1.12 ≈ 0.37

Single-variable QSP

Δ = 2, sinc is approximated as 

Gaussian with width 𝜎 = 𝑒−1.12 ≈ 0.37

Non-abelian QSP

Purity = 
0.976

Purity = 0.958 Purity = 0.982

Purity = 0.858 Purity = 0.858 Purity = 0.858

Fock-level truncation = 128

Numerical Simulation 

of State Transfer 

Protocols

𝒅: polynomial degree.  𝜹: rising edge width of QSP ploy.
𝝈: width of initial Gaussian  ∆: spacing between Gauss.



Signal Processing Perspective: 

State Transfer = Quantum AD/DA Conversion

A Mixed Analog-Digital Quantum Signal Processing 
framework!

See arXiv:2408.14729 for more details.

Digital Quantum “Signals” Analog Quantum “Signals”

D/A Conversion

A/D Conversion

Classical Signal Types

Time-Frequency dualPosition-Momentum dual

https://arxiv.org/abs/2408.14729


Application II: Quantum Fourier Transform

• Certain tasks can be extremely easy on CV systems.

Osc. free-evolution = Fourier transform

ෝ𝒙 → ෝ𝒑
𝐹 = 𝑒−𝑖

𝜋
2
ො𝑛

ො𝑛 = Ƹ𝑎† ො𝑎: number operator

ෝ𝒙 : position operator,   ෝ𝒑: momentum operator

𝑭† ෝ𝒙 𝑭 = 𝑒𝑖
𝜋
2
ො𝑛 𝒂 + 𝒂†

𝟐
𝑒−𝑖

𝜋
2
ො𝑛

=
𝑒−𝑖

𝜋
2 𝒂 + 𝑒𝑖

𝜋
2 𝒂†

𝟐
=
𝒊 𝒂†−𝒂

𝟐
= ෝ𝒑

(use BCH)

If n-qubit data can be encoded in the 𝒙-

quadrature, only need 1 gate to 

perform the QFT!

Use DV-CV State Transfer Protocols!

Quantum Fourier Transform (n qubits)

Gates: O(n2), exact;  O(n polylog(n)), approximation. 



Application II: QFT from Oscillator Free Evolution

• QFT with state transfer based on single-variable 

QSP:

• QFT with state transfer based on non-abelian QSP:

Gate count: O(n) instead of O(n2) or O(n polylog(n)) as in qubit QFT. 

See arXiv:2408.14729 for more detailsCaveat: Runtime; approximation

https://arxiv.org/abs/2408.14729


Application (dynamics): Dissipative Vibronic Dynamics

electron-vibrational couplingelectron-phonon coupling

Quantum simulation of boson-fermi mixtures

Figure from E. Crane et al., arXiv: 2409.03747



Application (dynamics): Advantage for Simulating Bosonic Matter

E. Crane et al. arXiv: 2409.03747

Displacement gate, cost 1

YL, S. Singh, K.C. Smith et al. arXiv: 2407.10381.

Simulation Cost of two different fermi-boson 
models on qubits vs. qubit-oscillators

(One Trotter step for 2 matter sites)

U(1) quantum link model 



Application (dynamics): Compilation of Dissipative Non-Adiabatic 
Vibronic Dynamics on cQED Devices

Gate cost of 1 Trotter step (0.01 pico-second of the real 
vibronic dynamics): 

Generalization to N-chromophores Electronic Dissipation via Reset

Effect of hardware noise~ pico-second 
vibronic dynamics simulation is possible, if 

gate fidelity > 99.99%

See arXiv:2502.17820 (accepted to 

JCTC) for more details. Collaboration 

with Victor Batista (Yale Chemistry)
Mid-circuit measurement and reset

https://arxiv.org/abs/2502.17820
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Co-Designing Eigen- and Singular-value Transformation Oracles: 

From Algorithmic Applications to Hardware Compilation

Luke Bell et al., arXiv:2502.16029

Using qubit-controlled oscillator displacements

to block encode a Gaussian energy filter

( )

( )ˆ ˆ

spins spins

(1) Map local energy terms  of Heisenberg spin chain

onto an ancilla qubit

(2) Ancilla controlled displacement of oscillator

0 0

(3) Project displaced oscillator onto vacuum (

ˆ

si H E p

sE

e

H

 −

−

  →  

( )
2

2
0

ˆ
2

spins spins

by measurement)

H E

e


− −

 →

https://arxiv.org/abs/2502.16029


Single-Shot Quantum Detection

✓ Step function will be ideal (red)

✓ Actual qubit response function (black)

✓ Minimize error decision probability (shaded)

Nonlinear transformation of the sensing parameter in single-shot limit.

Qubit measurement probability vs. 𝜷

How to quantify decision quality:

FN: false-negative error

FP: false-positive error

d is the circuit depth

Efficient scaling on decision error (single shot)

QSPI Response 

Function(𝛽)

102
Jasmine Sinanan-Singh et al., Quantum 8, 1427 (2024).



What’s next?

Early fault-
tolerance from QEC

Chemistry

Materials
Metrology/Sensing

Programming languages

Hybrid CV-DV Quantum ComputationDV-CV 
Variational Alg.

Digital-analog quantum signal processing

Optimization



Summary and Open Questions

• DV (qubits) + CV (oscillators) => a powerful paradigm of hybrid CV-DV 

quantum computing

• Physical ISAs and AMMs have been established => New applications

• Open questions:

• Control: Complete theory of non-Abelian QSP; Error propagation 

• Algorithms: more algorithmic framework, measurement-feedforward

• Applications: more general quantum arithmetic

• Fault-tolerance and architecture: Logical Hybrid CV-DV ISAs; parallelism; 

quantum memory; benchmark & certification

• Advantage: Compare with qubit algorithms
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C2QA ISA (theory) collaboration 

Nathan Wiebe 
U. Toronto & PNNL

Tim Stavenger
PNNL

Chris Kang
U. Washington -> 

Chicago 

Eleanor Crane
UCL -> Maryland, 

MIT

Micheline Solely
Yale -> 

Wisconsin

Kevin Smith
Yale -> IBM

+ Chuang group 
(MIT) John Martyn
+ Yuan Liu 
(MIT->NC State)

+ Alec Eickbusch 
(Yale -> Google)

+Shraddha Singh
(Yale)
+Baptiste Royer
(Yale->Sherbrooke)

• Instruction Set Architecture for 
hybrid qubit/oscillator systems

• “Bosonic Qiskit” extension to oscillators
• Represent levels of oscillator 

with a register of    qubits
• Access ISA and Wigner tomography 

toolkit within Qiskit

2n =

2logn = 

arXiv:2407.10381 

ORNL/Yale/NC State Gaussian 

Energy Filter collaboration:

Luke Bell, Yan Wang, Kevin C. Smith, 

Yuan Liu, Eugene Dumitrescu, SMG

arXiv:2209.11153 arXiv:2502.16029
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• Quantum Engineering and Simulation 

Theory (QUEST)

• quantum algorithms and 

simulation

• hybrid continuous-discrete-

variable quantum computing

• quantum engineering

• Email: yliu335@ncsu.edu

• https://yuanliu.group

107

Thanks!

mailto:yliu335@ncsu.edu
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Illustration of Programming Hybrid CV-DV Circuits



Coding and Programming Demontration
for Hybrid CV-DV Quantum Processors

https://github.com/shubdeepmohapatra01/ISCA2025-Tutorial/tree/main

https://github.com/shubdeepmohapatra01/ISCA2025-Tutorial/tree/main
https://github.com/shubdeepmohapatra01/ISCA2025-Tutorial/tree/main
https://github.com/shubdeepmohapatra01/ISCA2025-Tutorial/tree/main


Bosonic Qiskit

• Simulation Framework for CV-DV systems.

• Each qumode is made up of multiple qubits

• For a qumode with n qubits the Fock level cutoff is 2n



Basic gates



CAT State

• CAT state is a quantum superposition of two coherent states

Cat = N (α ± −α)

• Even cat state: + sign → constructive interference

• Odd cat state: − sign → destructive interference

• Why is it useful? 

– Encoding logical qubits into cat states (cat qubits)

– Generating GKP codewords



Nondeterministic CAT State Generation



CAT State



CAT State 



CAT State



CAT State



GKP State

• GKP States:

|0ۧ(GKP) ∝ ∑ₘ | m√π ۧₓ

|1ۧ(GKP) ∝ ∑ₘ | (m+1)√π ۧₓ

• Multiple rounds of cat-state protocol with displacement α = √π

• After k rounds, each controlled displacement adds 2 new 

peaks.

• The result is a superposition of 2^k equally spaced peaks in 

position space.



Why GKP State is useful?

• Error Correction : Can correct errors in both position 

and momentum

• Fault Tolerant Logical Qubit Encoding

• Used as input state for CV-DV applications like Shor’s 

algorithm 



GKP State



State-Transfer

[1] Liu, Yuan, et al. "Toward Mixed Analog-Digital Quantum Signal Processing: 

Quantum AD/DA Conversion and the Fourier Transform." arXiv preprint 

arXiv:2408.14729 (2024).



CV to DV State Transfer Circuit



CV to DV State Transfer



State Transfer Circuit



QFT

[1] Liu, Yuan, et al. "Toward Mixed Analog-Digital Quantum 

Signal Processing: Quantum AD/DA Conversion and the 

Fourier Transform." arXiv preprint arXiv:2408.14729 (2024).



QFT DV vs CV-DV

DV QFT (Initial State: 00) CV-DV QFT (Initial 

State: 00)



THANK YOU
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Extra Slides Beyond Here
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Category Generators Complexity

Product states in Z basis classical

States generated from product 

states via Clifford gates

Clifford generators 

(H,S=Sqrt(Z),CNOT)

Quantum entangled but no 

‘magic.’
Clifford operations easy to 

simulate classically via 

stabilizer evolution

States generated from product 

states via Non-Clifford Gates

T=Sqrt(S) gate ‘Magic’ prevents efficient 

classical simulation but allows 
violation of Bell inequalities 

and universal computation

Hierarchy of qubit state complexities
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Category Generators Complexity

Vacuum state Easy to make if 

Gaussian states generated 

from vacuum via Gaussian 
gates, or incoherent mixtures 

of same

H(x,p) quadratic form Easy to simulate classically 

via evolution of mean and 
covariance matrix.  Easy to 

sample from.

Non-Gaussian 

(e.g. superpositions of 
Gaussians, not mixtures of 

Gaussians)

H(x,p) higher than quadratic 

polynomial, 
e.g., x^3

Wigner function negativity 

prevents efficient classical 
simulation but allows violation 

of Bell-like inequalities and 

universal computation

Hierarchy of oscillator state complexities*

*Subtlety:
Complexity of CV states depends on what measurement resources are available.

Bk Th ?
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Strong Dispersive Limit

q† †

r damping

q† †

r damping

q† †

r damping

[         [Rabi]
2

[    [Jaynes-Cummings]
2

              [Dispersive]
2

]

]

z x

z

z z

H a a g a a H

H a a g a a H

aH a a a H


  


   


  

+ −

= + + + +

= + + + +

= + + +

Dipole CouplingTransmon qubitMicrowave 
resonator

In order to fully control a harmonic oscillator,
we require an anharmonic object (e.g., a qubit) as an auxiliary 

controller.
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