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Quantum signal processing (QSP) is a methodology for constructing polynomial transformations
of a linear operator encoded in a unitary. Applied to an encoding of a state ρ, QSP enables the
evaluation of nonlinear functions of the form tr(P (ρ)) for a polynomial P (x), which encompasses
relevant properties like entropies and fidelity. However, QSP is a sequential algorithm: implementing
a degree-d polynomial necessitates d queries to the encoding, equating to a query depth d. Here, we
reduce the depth of these property estimation algorithms by developing Parallel Quantum Signal
Processing. Our algorithm parallelizes the computation of tr(P (ρ)) over k systems and reduces
the query depth to d/k, thus enabling a family of time-space tradeoffs for QSP. This furnishes
a property estimation algorithm suitable for distributed quantum computers, and is realized at
the expense of increasing the number of measurements by a factor O(poly(d)2O(k)). We achieve
this result by factorizing P (x) into a product of k smaller polynomials of degree O(d/k), which
are each implemented in parallel with QSP, and subsequently multiplied together with a swap
test to reconstruct P (x). We characterize the achievable class of polynomials by appealing to
the fundamental theorem of algebra, and demonstrate application to canonical problems including
entropy estimation and partition function evaluation.

I. INTRODUCTION

The increasing sophistication of quantum computers has
pressured researchers to clearly demarcate problems for
which quantum algorithms provide provable speedups
over their classical counterparts. Toward resolving this
tension, recent work has proposed a qualified ‘unification
of quantum algorithms’, based on the related frameworks
of quantum signal processing (QSP) [1–4] and the quan-
tum singular value transformation (QSVT) [5]. These
algorithms enable the application of tunable polynomial
functions to the singular values of large linear opera-
tors, in turn unifying and simplifying the presentation
of most known quantum algorithms [6], while simultane-
ously exhibiting good numerical properties [7–10], near-
optimal query complexity [11], and fruitful connections
to well-studied techniques in matrix decomposition and
functional analysis [10, 12, 13].

Despite this broad success, we are not yet in a world
of fault tolerant quantum devices and are thus unable to
leverage the full apparatus of QSP/QSVT. Experimen-
tal implementations of QSP/QSVT on existing hardware
have largely been limited to small examples on noisy de-
vices [14, 15]. Consequently it is an interesting question
whether the theoretical success of QSP and QSVT can
be extended to experimental systems with mild resource
constraints, such as limited coherence times. Specifically,
QSP and QSVT are sequential algorithms without in-
termediate measurement, and indeed derive their pleas-
ing properties from their circuit depths. Nonetheless, it
seems reasonable that even with a limited circuit depth

some of these properties could be recovered at the cost
of increased circuit width and/or sample complexity.
As suggested by the title of this work, we are interested

in realizing this by parallelizing QSP, motivated by the
ubiquitous use of parallel processing in classical computa-
tion [16]. At a high-level, such processes take advantage
of the fact that certain problems permit division into
simpler sub-problems. Showing that such divide-and-
conquer strategies can prove advantageous requires that
(1) the original problem can be subdivided efficiently, (2)
the sub-problems can be solved faster than the original
problem, and (3) solutions to sub-problems can be effi-
ciently reconciled to produce the full solution. We trans-
late this notion to the circuit model of quantum com-
putation in a straightforward way, where sub-processes
(analogously to ‘threads’ in the classical world) are con-
sidered in parallel when they act on disjoint subsets of
qubits, and where problem subdivision takes place en-
tirely classically, before the execution of the quantum
circuit.
This work proposes one scheme for parallelizing QSP

problems into multiple independent sub-problems, each
of which requires shallower circuits. This technique,
termed Parallel Quantum Signal Processing (Parallel
QSP) is applicable to the task of computing nonlinear
functions of quantum states, with wide application in
the estimation of common properties like entropies and
entanglement measures [17–19], and the efficient realiza-
tion of disparate multi-state tests [20]. As QSP gener-
ates polynomial transformations, subdivision of a prob-
lem will correspond to polynomial factorization, and rec-
onciliation to multiplication of factor polynomials.
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Standard QSP:

Parallel QSP:b)

a)

......

... ...

FIG. 1. Illustration of standard QSP (a) vs. parallel QSP
(b). The operators U [P (ρ)] denote block-encodings of P (ρ)
(as depicted in the inset), realized through QSP. For a degree-
d polynomial, standard QSP generally requires query depth
2d = O(d). In contrast, parallel QSP distributes the com-
putation over k threads by implementing factor polynomials
Pk(x) in parallel, and achieves a reduced query depth O(d/k).
This is accomplished using a swap test, schematically denoted

here by an operation S̃k and subsequent measurements; see
Sec. IIIA for explanation.

Our construction sits at the intersection of two lines of
work for estimating properties of quantum states: quan-
tum signal processing [5, 21], and multivariate trace esti-
mation [17, 22]. The benefit of combining these tech-
niques is rooted in jointly leveraging their individual
strengths. While QSP can prepare nonlinear functions
of a quantum state, the circuits required are often quite
deep [5, 23, 24]. Conversely, while recently proposed
methods for multivariate trace estimation can make do
with shallow circuits (e.g., constant depth [22]), the
achievable class of nonlinear functions is limited. This
work provides candidate problems for which these two
toolkits can be applied jointly, with the benefit of ana-
lytic simplicity and asymptotic savings in circuit depth.

A. Results and Paper Outline

In standard QSP, generation of a degree-d polynomial
requires d successive queries to the encoding unitary, cor-
responding to a query depth d and circuit depth O(d).
Given that large circuit depths are prohibitive on near-

term devices limited by short coherence times, we seek
valid methods to parallelize QSP into many shorter QSP
circuits and reduce the corresponding query depth.
Here we parallelize computation over k threads and

reduce query depth by an O(k) factor. In practical situ-
ations, k = O(1) ≪ d, such as when parallelizing a large
degree polynomial over a few quantum devices. This par-
allelization establishes parallel QSP as a suitable algo-
rithm for distributed quantum computation [25], where
multiple devices can be run concurrently. However, the
reduction in depth afforded by parallelization comes with
an increased number of measurements O(poly(d)2O(k)).
Crucially, this scales polynomially in d rather than expo-
nentially, in contrast to techniques like error mitigation
that feature super-polynomial scaling in depth [26]. On
the other hand, this comes with an exponential cost in
the number of threads, similar to that seen in quantum
circuit cutting [27].
An informal statement of our main result is given in

the following Theorem I.1. For intuition, we also provide
a comparison of standard QSP and parallel QSP in Fig. 1.

Theorem I.1 (Informal statement of Theorem IV.3).
Let P (x) be a real-valued polynomial of degree d, that is
bounded as maxx∈[−1,1] |P (x)| ≤ 1. Given access to an
input state ρ and a block encoding thereof, we can invoke
parallel QSP across k threads to estimate the property

w = tr(P (ρ)) (1)

with a circuit of width O(k) and query depth at most
≈ d/2k. The number of measurements required to resolve
w to additive error ϵ is

O

(
poly(d)2O(k)

ϵ2

)
, (2)

where the terms poly(d)2O(k) depend on the chosen fac-
torization of P (x).

Toward an exposition of the main theorem, we review
QSP and its application to density matrices and trace es-
timation in Sec. II. Following this, in Sec. III we present
parallel QSP, including a characterization of the achiev-
able class of polynomials. We then adapt parallel QSP to
arbitrary property estimation problems in Sec. IV, and
exemplify this construction in Sec. V for the estimation
of Rényi entropies, partition functions, and the von Neu-
mann entropy. Discussion and comparison with alterna-
tive methods are included in Sec. VI, with detailed proofs
of results confined to the appendices.

II. PRELIMINARIES

In this section, we review the preliminaries for parallel
QSP: standard QSP (Sec. IIA), its application to density
matrices (Sec. II B), and its use in estimating the trace
of matrix functions (Sec. II C).
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A. Quantum Signal Processing

Quantum signal processing (QSP) is a method for re-
alizing a polynomial transformation of a quantum sub-
system [2–4]. The QSP algorithm works by interleaving
a signal operator U , and a signal processing operator S.
Conventionally, U is taken to be an x-rotation through a
fixed angle and S a z-rotation through variable angle ϕ:

U(x) =

[
x i

√
1− x2

i
√
1− x2 x

]
, S(ϕ) = eiϕZ . (3)

Introducing a set of d + 1 QSP phases ϕ⃗ =
(ϕ0, ϕ1, ..., ϕd) ∈ Rd+1, the following QSP sequence is
defined as an interleaved product of U and S:

Uϕ⃗(x) = S(ϕ0)

d∏
i=1

U(x)S(ϕi). (4)

The matrix elements of the QSP sequence are manifestly
polynomials of x:

Uϕ⃗ =

[
P (x) iQ(x)

√
1− x2

iQ∗(x)
√
1− x2 P ∗(x)

]
, (5)

where P (x) and Q(x) are polynomials parameterized by

ϕ⃗ that obey

1. deg(P ) ≤ d, deg(Q) ≤ d− 1 ;

2. P (x) has parity d mod 2, and Q(x) has parity

(d− 1) mod 2 ;

3. |P (x)|2 + (1− x2)|Q(x)|2 = 1, ∀ x ∈ [−1, 1] .

(6)

This result implies that one can construct polynomials in
x by projecting into a block of Uϕ⃗, e.g. ⟨0|Uϕ⃗|0⟩ = P (x).

Importantly, realizing a degree-d polynomial necessitates
d sequential calls to the signal operator, translating to a
query depth d, or a circuit depth O(d).
While the conditions of Eq. (6) restrict the class of re-

alizable polynomials, a broader class of polynomials can
be implemented by projecting into other bases and us-
ing extensions of QSP. For instance, the |+⟩⟨+| matrix

element ⟨+|Uϕ⃗|+⟩ = Re(P (x)) + iRe(Q(x))
√
1− x2 can

realize any real polynomial of definite parity, obviating
condition 3 above. Even more powerful is generalized
QSP, introduced in Ref. [28] as an extension of the QSP
sequence in Eq. (4). As we review in Appendix A, gen-
eralized QSP enables one to design an arbitrary polyno-
mial P (x) restricted only by the condition |P (x)| ≤ 1
over x ∈ [−1, 1]. This encompasses complex polynomi-
als and those of indefinite parity. To realize a degree-d
polynomial, generalized QSP requires a query depth 2d.
By this reasoning, QSP can encode polynomials that

need only be bounded as ∥P∥[−1,1] ≤ 1, where ∥ · ∥[−1,1]

is the function norm

∥f∥[−1,1] := max
x∈[−1,1]

|f(x)|. (7)

For an arbitrary degree-d polynomial, the requisite query
depth is 2d; however, the query depth reduces to d for a
polynomial of definite parity. In addition, the converse of
this result holds: for any polynomial ∥P∥[−1,1] ≤ 1, there
exist corresponding QSP phases that can be efficiently
computed with a classical algorithm [7, 8, 29–31], thus
amounting to a classical pre-computation step.
Remarkably, the methodology of QSP can be extended

to prepare a polynomial transformation of a Hermitian
operator through its extension to the quantum eigenvalue
transformation (QET) [3–5]. This is achieved analogous
to QSP: provided access to an unitary that block-encodes
an operator A in a matrix element, we can design a se-
quence that encodes a polynomial transformation P (A):

U [A] =

[
A ·
· ·

]
7→ Uϕ⃗[A] =

[
P (A) ·

· ·

]
, (8)

where the unspecified entries ensure unitarity. Unitarity
also requires ∥A∥ ≤ 1 and ∥P (A)∥ ≤ 1; otherwise, these
entries must be rescaled by a constant to meet these con-
ditions. Mirroring Eq. (4), Uϕ⃗[A] is an interleaved se-

quence of U [A] and parameterized rotations. Essentially,
this applies QSP within each eigenspace of A and outputs
a degree-d polynomial transformation P (A). As above,
the cost of realizing an arbitrary degree-d polynomial is
2d sequential queries to the block-encoding of A, trans-
lating to a query depth 2d, although this reduces to d
for a polynomial of definite parity. Lastly, while Eq. (8)
specializes to a block-encoding in the |0⟩⟨0| matrix ele-
ment, one can more generally take A to be accessed by
orthogonal projectors Π,Π′ as A = ΠU [A] Π′.

B. QSP On Density Matrices

To exemplify QSP, let us consider its application to a
density matrix ρ. This requires a block encoding of ρ,
which is directly achievable (sans rescaling) because the
norm ∥ρ∥ ≤ 1 for any state.
While in principle there exist various methods to block

encode a density matrix ρ, a sufficient oracle is a unitary
that prepares a purification of ρ [4]. This oracle model
is known as the quantum purified query access model,
and has been used in recent works on quantum entropy
estimation and property testing [32, 33]. To see how this
model works, let ρ =

∑
j pj |χj⟩⟨χj | be an n-qubit density

matrix, and Vρ be a unitary that prepares a purification
of ρ as

Vρ|0⟩⊗2n = |ψρ⟩AB =
∑
j

√
pj |j⟩A|χj⟩B (9)

on n-qubit subsystems A and B, such that
trA(|ψρ⟩⟨ψρ|AB) = ρB . Then, introduce an addi-
tional n-qubit system C, and let SWAPBC be an
operator that swaps subsystems B and C. One can
then show that ρ is block encoded in the operator
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a) Hadamard Test

b) QSP Test

FIG. 2. a): The Hadamard test for trace estimation of
QSP polynomials, specialized to a block-encoding in the |0⟩⟨0|
block. b): The QSP test for trace estimation of QSP polyno-
mials, also specialized to a block-encoding in the |0⟩⟨0| block.

U [ρ] := (V †
ρ )AB · SWAPBC · (Vρ)AB as [4](

⟨0|⊗2n
AB ⊗ IC

)
· U [ρ] ·

(
|0⟩⊗2n

AB ⊗ IC
)
= ρC . (10)

Therefore, access to Vρ enables one to block encode ρ,
and thus apply QSP to generate polynomials P (ρ).

C. Trace Estimation with QSP

Among the applications of QSP, a notable use case is
to estimate the trace of a matrix function, i.e. tr(f(A)).
As explained in Ref. [34], there are two main methods
for estimating such a trace with QSP, both of which ap-
proximate f(A) with a QSP polynomial P (A). However,
the first method estimates tr(P (A)) with a Hadamard
test [35], while the second method, which we call the QSP
test, estimates the squared trace tr

(
|P (A)|2

)
by measur-

ing the block-encoding qubit(s). Here we discuss both
methods and specialize to the block encoding convention
Π = |0⟩⟨0| for ease of presentation.

1. Hadamard Test

In the first method, the Hadamard test [35] is applied
to an input state σ, with the target unitary set to a QSP
sequence that block encodes P (A). We illustrate this cir-
cuit in Fig. 2a. The probability of measuring the ancilla
qubit in the state |0⟩ is

p1 =
1

2
+

1

2
Re
[
tr
(
σP (A)

)]
. (11)

By instead applying a conjugated phase gate to the an-
cilla qubit after the Hadamard gate, the probability of
measuring |0⟩ becomes

p2 =
1

2
+

1

2
Im
[
tr
(
σP (A)

)]
, (12)

such that the full trace can be reconstructed as
tr
(
σP (A)

)
= 2p1 − 1 + i(2p2 − 1). By estimating p1

and p2 each to error at most ϵ/4, one obtains an ap-
proximation to the trace tr

(
σP (A)

)
with error at most

ϵ. By the central limit theorem, this requires O(1/ϵ2)
measurements.

2. QSP Test

In the second method, one applies the QSP sequence
to an input state |0⟩⟨0|⊗σ, and then estimates the prob-
ability that the block-encoding qubit is measured in the
state |0⟩. This is equivalently the probability that the
correct block of the QSP sequence is applied to the input
state, which is

p = tr
(
σ|P (A)|2

)
. (13)

Therefore, an estimation of this to error ϵ furnishes an
approximation of the trace tr

(
σ|P (A)|2

)
with error ϵ, and

requires O(1/ϵ2) measurements. We will refer to this
method as the QSP test, and depict its circuit in Fig. 2b.
The QSP test is distinct from the Hadamard test in

that the QSP polynomial P (A) is squared in the trace.
While the Hadamard test can evaluate traces involving
the QSP polynomial P (A) directly (i.e., tr(σP (A))), the
QSP test is limited to traces involving its magnitude
squared |P (A)|2 (i.e., tr

(
σ|P (A)|2

)
). This leads to a

trade-off in the capabilities of these approaches, where
the polynomial |P (A)|2 is restricted to be real and non-
negative, yet is of twice the degree of P (A).

3. Utility in Trace Estimation

Both the Hadamard test and the QSP test can be used
to estimate the trace of a matrix function tr(f(A)) by set-
ting the input state to the maximally mixed state σ =
I/2n, where n is the number of qubits. By then selecting
a polynomial that approximates f(x) as P (x) ≈ f(x) or
|P (x)|2 ≈ f(x), respectively, both methods output an ap-
proximation to tr(f(A))/2n. Due to this rescaling by 2n,
resolving tr(f(A)) to error ϵ requires a number of mea-
surements O(22n/ϵ2). That this cost scales exponentially
with the number of qubits is a generic feature, because
arbitrary traces tr(f(A)) can be exponentially large in
the dimension of A. Ref. [32] uses this approach to de-
velop an algorithm for estimating the α-Rényi entropy of
a density matrix, and notes the same cost scaling.
However, for estimating a trace tr(f(ρ)) of a density

matrix ρ, it is advantageous to set both the input state
and block encoding to be ρ, i.e., σ = ρ and A = ρ.
In this case, the Hadamard test and QSP test output
the traces tr(ρP (ρ)) and tr

(
ρ|P (ρ)|2

)
, respectively. From

these traces, one can estimate tr(f(ρ)) by selecting poly-
nomials that satisfy xP (x) ≈ f(x) or x|P (x)|2 ≈ f(x),
respectively. Importantly, this approach circumvents the
rescaling by 2n, such that estimating tr(f(ρ)) to error
ϵ requires O(1/ϵ2) measurements. This streamlined ap-
proach is used in Ref. [36] to design new algorithms for
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estimating the α-Rényi entropy and von Neumann en-
tropy, while avoiding an exponentially large number of
measurements.

Lastly, while both the Hadamard and QSP tests
achieve complexity O(1/ϵ2), we note that one could al-
ternatively use techniques like amplitude/phase estima-
tion to reduce the complexity to O(1/ϵ). However, this
complexity corresponds to a large O(1/ϵ) depth [37, 38].
As the central focus of this work is reducing depth, we
forgo these techniques in favor of the Hadamard and QSP
tests, which achieve shallower depths at the expense of
an increased measurement overhead.

III. PARALLEL QUANTUM SIGNAL
PROCESSING

With the preliminaries laid out, we now present our
algorithm for parallel QSP. In its simplest incarnation,
parallel QSP enables the estimation of a trace of the
form tr

(
ρkR(ρ)

)
, where R(x) is a degree-d polynomial,

and k is the number of systems over which the compu-
tation is parallelized, i.e., the number of threads. While
standard QSP can compute this trace with query depth
∼ d + k, parallel QSP achieves this computation with
a query depth ≈ d/k. This is achieved by factorizing
R(x) into k polynomials of degree O(d/k), which are im-
plemented in parallel with QSP, and subsequently mul-
tiplied together with a generalized swap test (Sec. III A).
However, this depth reduction of parallel QSP is realized
at the expense of increasing the circuit width to O(k),
and the number of measurements by a factor that de-
pends on the chosen factorization of R(x). Moreover,
while tr

(
ρkR(ρ)

)
encompasses a limited class of proper-

ties, later in Sec. IV we expand this class to arbitrary
polynomial functions.

In this section, we first review the generalized swap
test (Sec. III A), which will underpin parallel QSP. We
then present the parallel QSP algorithm (Sec. III B), in-
cluding a characterization of the achievable polynomials
and a discussion of its resource requirements, and con-
clude by commenting on the implications of our algo-
rithm (Sec. III C).

A. The Generalized Swap Test

An essential ingredient of parallel QSP is a tool that
we will refer to as the generalized swap test. As its name
suggests this is an extension of the usual swap test, in-
troduced in Ref. [19] to measure the overlap between two
quantum states, i.e. tr(ρσ). Explicitly, the generalized
swap test uses the identity that the expectation value of
a cyclic shift applied to a product state ρ⊗k (for an in-
teger k ≥ 1), is equal to the trace of the multiplicative
product [39]:

tr
(
Sk · ρ⊗k

)
= tr

(
ρk
)
, (14)

where Sk is a cyclic shift on the k systems comprising
ρ⊗k, and acts as

Sk

[
|ψ1⟩|ψ2⟩|ψ3⟩...|ψk⟩

]
= |ψk⟩|ψ1⟩|ψ2⟩...|ψk−1⟩. (15)

Notably, this identity converts a tensor product ρ⊗k to a
multiplicative product ρk, and reduces to the usual swap
test for k = 2. In addition, this identity holds for a tensor
product of distinct states ρj :

tr

(
Sk ·

k⊗
j=1

ρj

)
= tr

(
k∏

j=1

ρj

)
. (16)

Using the generalized swap test, one can estimate the
trace tr

(
ρk
)
by measuring the expectation value of Sk

on k copies of ρ. Because the states comprising ρ⊗k can
be arranged in parallel in a quantum circuit, this effec-
tively parallelizes the computation of the multiplicative
product ρk, without ever having to explicitly multiply ρ
sequentially. Accordingly, the generalized swap test has
been employed to compute Rényi entropies in quantum
Monte Carlo [40], estimate nonlinear functions of state
on a quantum computer [22, 39, 41], and perform entan-
glement spectroscopy [17, 42, 43].
In practice, the expectation value of Sk can be esti-

mated with various techniques. While an elementary im-
plementation as a Hadamard test applied to the cyclic
shift operator translates to a depth O(k) [17, 44], recent
works have put forth novel constructions of the general-
ized swap test that achieve O(1) quantum depth [22, 43].
Ref. [43] achieves this using 2k copies of a purification of
ρ and additional classical post-processing, leading to an
O(1) depth independent of both n and k. Alternatively,
Ref. [22] prepares an ancilla system in a special GHZ
state, from which the cyclic shift Sk can be measured in
depth O(1). Ultimately, these results demonstrate that
the generalized swap test can estimate the trace tr

(
ρk
)

with a circuit of width O(k) and depth O(1), thus fully
parallelizing the computation of the multiplicative prod-
uct.

B. Parallel QSP

Parallel QSP is a synthesis of the QSP test (Sec. II C)
and the generalized swap test (Sec. III A). At a high
level, parallel QSP works by first using QSP to imple-
ment block encodings of k polynomials {Pj(ρ)}kj=1 across
k threads, and separately applying each to an input state
ρ. Then applying the generalized swap test to the result-
ing state, we can extract the trace of the corresponding
multiplicative product:

z := tr

(
k∏

j=1

Pj(ρ)ρPj(ρ)
†

)
= tr

(
ρk

k∏
j=1

|Pj(ρ)|2
)
.

(17)
By appealing to the fundamental theorem of algebra, the

product
∏k

j=1 |Pj(ρ)|2 can represent an arbitrary real,
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non-negative polynomial. If this target polynomial is of
degree d, then each polynomial factor Pj(ρ) can be guar-

anteed to have degree at most ≈ d
2k , thus dividing the

query depth byO(k). While the trace z encompasses only
a limited class of functions, in Sec. IV we show that an
arbitrary polynomial can be decomposed into this form
and made amenable to parallel QSP, enabling general
property estimation algorithms at reduced query depth.

As a hybrid of the QSP test and the generalized swap
test, parallel QSP requires access to both ρ and a block
encoding of ρ. As shown in Sec. II B, the purified query
access model provides an oracle that prepares a purifi-
cation of ρ and thus furnishes a block encoding of ρ.
This oracle also provides access to ρ by disregarding the
ancilla system, and thus is sufficient for parallel QSP.
Nonetheless, this is not the only possibility, as other or-
acles can also provide access to both ρ and a block en-
coding thereof.

1. The Parallel QSP Algorithm

To sharpen our analysis, we first present the parallel
QSP circuit in Fig. 3. The initial state of the algorithm is
a product state ρ⊗k across the k threads, as well as ancilla
qubits used to access block encodings. The circuit then
consists of (1) the QSP stage, and (2) the generalized
swap test stage. The QSP stage comprises k unitaries
{U
[
Pj(ρ)

]
}kj=1 that block encode polynomials Pj(ρ), re-

alized by QSP. We apply each unitary to the input state
in parallel and post-select on the successful application
of Pj(ρ). Collectively, this succeeds with probability

Pr(QSP Success) =

k∏
j=1

tr
[
Pj(ρ)ρPj(ρ)

†], (18)

and outputs the product state

k⊗
j=1

Pj(ρ)ρPj(ρ)
†

tr
[
Pj(ρ)ρPj(ρ)†

] . (19)

Next, we apply the generalized swap test to this prod-
uct state to compute the trace of the corresponding mul-
tiplicative product, which we denote by z̃:

z̃ : = tr

 k∏
j=1

Pj(ρ)ρPj(ρ)
†

tr
[
Pj(ρ)ρPj(ρ)†

]


=
tr
(
ρk
∏k

j=1 |Pj(ρ)|2
)

∏k
j=1 tr

[
ρ|Pj(ρ)|2

] =
z

Pr(QSP Success)
.

(20)

We can then estimate z by resolving z̃ and
Pr(QSP Success) to sufficient accuracy. This is the
essence of parallel QSP: the computation of a trace of a
product of polynomials, by executing these polynomials
in parallel rather than sequentially.

With this understanding, we formalize the parallel
QSP algorithm with the following theorem:

......

...

QSP Stage Generalized Swap
Test Stage

...

FIG. 3. The quantum circuit for the parallel QSP algo-
rithm. The operations U [Pj(ρ)] are unitary block-encodings
of polynomials Pj(ρ), realized with QSP. For illustrative sim-
plicity, we specialize to block encodings in the |0⟩⟨0| block.
Upon application of these polynomials to initial states ρ,
one enacts a generalized swap test, denoted schematically as

S̃k and subsequent measurements; this serves as a symbolic
proxy for the various implementations of the generalized swap
test [17, 22, 43]. Observe that the parallel QSP circuit has a
reduced query depth O(d/k), at the expense of increasing its
width to O(k).

Theorem III.1 (Parallel QSP). Provided access to a
density matrix ρ and a block encoding thereof, the par-
allel QSP circuit executed across k threads enables the
estimation of the quantity

z = tr

(
ρk

k∏
j=1

|Pj(ρ)|2
)
, (21)

where each Pj(ρ) is a block-encoded polynomial imple-
mented with QSP. More specifically, z can be estimated to
additive error ϵ by running the parallel QSP circuit O( 1

ϵ2 )
times, where the requisite query depth is 2maxj{deg(Pj)}
and the circuit width is O(k).

Proof. Using the parallel QSP circuit of Fig. 3,
consider the measurement cost of resolving z =
Pr(QSP Success) × z̃ to additive error ϵ. Obviously,
Pr(QSP Success) is a probability and can naturally be es-
timated by repeatedly running the circuit. On the other
hand, the expression for z̃ depends on the chosen imple-
mentation of the generalized swap test, but in general
can be expressed as an expectation value.

For instance, a simple implementation of the general-
ized swap test is provided by applying a Hadamard test
to Sk. In this case, the probability of measuring the an-
cilla qubit (of the Hadamard test) in the state |0⟩ upon
successful application of each QSP sequence is

Pr
(
Ancilla = |0⟩

∣∣ QSP Success
)
=

1

2
(1 + z̃). (22)
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Then we can express z as

z = Pr(QSP Success)

×
(
2 · Pr

(
Ancilla = |0⟩

∣∣ QSP Success
)
− 1
)

= 2 · Pr
(
QSP Success, and Ancilla = |0⟩

)
− Pr(QSP Success).

(23)
Therefore, estimating both of these probabilities to ad-
ditive error ϵ/3 provides an approximation to z with
additive error ϵ, and the central limit theorem implies
that this requires O(1/ϵ2) runs of the parallel QSP cir-
cuit. While this specializes to a specific implementation
of the generalized swap test, this result is in fact general,
because other implementations also approximate z̃ as a
combination of expectation values.

Next, consider the query depth of the parallel QSP cir-
cuit. In the QSP stage, each unitary U

[
Pj(ρ)

]
requires

query depth at most 2 deg(Pj) for an arbitrary polyno-
mial as we discussed in Sec. II A, corresponding to a total
query depth 2maxj(deg(Pj)). On the other hand, the
generalized swap test makes no queries to the block en-
coding and does not contribute to the query depth. It
however can contribute to the circuit depth depending
on its implementation, but this can be reduced to O(1)
using the constructions of Refs. [22, 43]

Lastly, as the QSP stage consists of k unitaries enacted
in parallel across k systems, its width is O(k). Like-
wise, while the precise width of the generalized swap test
stage depends on its implementation, the constructions
of Refs. [17, 22, 43, 44] use O(k) system copies arranged
in parallel, equating to a width O(k).

2. Characterization of Parallel QSP Polynomials

According to Theorem III.1, the parallel QSP algo-

rithm estimates the trace z = tr
(
ρk
∏k

j=1 |Pj(ρ)|2
)
, thus

parallelizing the computation of polynomials that take

the form xk
∏k

j=1 |Pj(x)|2. We can characterize this class
of polynomials by appealing to the fundamental theorem
of algebra:

Lemma III.1. [Factorization of Real, Non-negative
Polynomials] Consider a polynomial R(x) of even degree
d that is real and non-negative over the real axis x ∈ R.
For real inputs x, this polynomial can be expressed as the
product of the squared magnitudes of k ≤ d factor poly-
nomials Rj(x):

R(x) =

k∏
j=1

|Rj(x)|2. (24)

While the factor polynomials Rj(x) are not unique, there
exists a factorization in which every factor polynomial is
guaranteed to have degree at most deg(Rj) ≤ ⌈d/2k⌉.

Proof. Applying the fundamental theorem of algebra to
a polynomial R(x) of even degree1 d that is real and non-
negative over x ∈ R, implies that its real roots have even
multiplicity, and its complex roots (with non-zero imagi-
nary part) come in complex conjugate pairs. Accordingly,
R(x) can be written as

R(x) = C
∏
i=1

(x− ri)
2αri

∏
l=1

(x− cl)
βcl (x− c∗l )

βcl , (25)

for distinct real roots ri of even multiplicity 2αri , and
distinct complex roots cl of multiplicity βcl , and a coef-
ficient C ∈ R. For real x ∈ R, R(x) can therefore be
expressed as

R(x) =

∣∣∣∣∣√C∏
i=1

(x− ri)
αri

∏
l=1

(x− cl)
βcl

∣∣∣∣∣
2

=:
∣∣R(x)

∣∣2,
(26)

where R(x) is a degree d/2 polynomial.
To show the decomposition stated in this theorem, we

need to factorize R(x) into a product of k factor polyno-

mials: R(x) =
∏k

j=1 Rj(x). This can be achieved by

partitioning the d/2 terms in Eq. (26) into k groups,
and defining Rj(x) as the product over terms in the jth

group, times C1/2k. Many such groupings exist, so a
factorization of R(x) is not unique. Nonetheless, one
can partition the roots such that the first d/2 mod k
groups are of size ⌊d/2k⌋+ 1, and the remaining groups
are of size ⌊d/2k⌋. If d/2 divides k, then the maximal
size is ⌊d/2k⌋ = d/2k; if d/2 does not divide k, then the
maximal size is ⌊d/2k⌋ + 1 = ⌈d/2k⌉. In either case,
this guarantees that each factor polynomial has degree
at most deg(Rj) ≤ ⌈d/2k⌉.

By Lemma III.1, an arbitrary real, non-negative poly-
nomial of even degree d can be decomposed into a
product of k factor polynomials squared: R(x) =∏k

j=1 |Rj(x)|2, where the factor polynomials are of de-

gree at most ⌈d/2k⌉ = O(d/k). This decomposition
makes the polynomial R(x) amenable to parallel QSP
according to Theorem III.1, given that we implement the
factor polynomials Rj(x) with QSP. With this insight,
we can characterize the class of polynomials achievable
with parallel QSP:

Theorem III.2 (Parallel QSP Polynomial Characteri-
zation). Let R(x) be a polynomial of even degree d, that
is real and non-negative over the real axis x ∈ R. By
Lemma III.1, let R(x) factorize into k factor polynomi-

als as R(x) =
∏k

j=1 |Rj(x)|2, where deg(Rj) ≤ ⌈d/2k⌉.
Invoking parallel QSP across k threads with block-encoded
polynomials Rj(x), we can estimate the trace

z = tr
(
ρkR(ρ)

)
. (27)

1 Note that the degree is necessarily even; otherwise, the condition
of non-negativity for all x ∈ R cannot be obeyed.
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The requisite query depth is at most 2⌈d/2k⌉ ≈ d/k and
the circuit width is O(k). The number of measurements
required to estimate z to additive error ϵ is

O

(
K (R)

4

ϵ2

)
, (28)

where K (R) is a quantity we call the “factorization con-
stant”, whose value depends on the chosen factorization
of R(x) as 2

K (R) =

k∏
j=1

∥Rj∥[−1,1], (29)

where the norm ∥ · ∥[−1,1] was defined in Eq. (7).

Proof. The density matrix ρ is Hermitian and its eigen-
values real. Therefore, as per Lemma III.1, the action of
R(x) on a ρ factorizes as a product of factor polynomials:

R(ρ) =

k∏
j=1

|Rj(ρ)|2, (30)

where deg(Rj) ≤ ⌈d/2k⌉. Provided block encodings of
the factor polynomials, we can apply the results of The-

orem III.1 to extract the trace tr
(
ρk
∏k

j=1 |Rj(ρ)|2
)

=

tr
(
ρkR(ρ)

)
, as desired. Therefore, all that remains is to

construct block encodings of the factor polynomials with
QSP.

However, the factor polynomials do not necessarily
obey the conditions of QSP polynomials. For instance,
even if ∥R∥[−1,1] ≤ 1, it is not necessarily true that the
factor polynomials also obey this condition. In addition,
the factor polynomials are in general not of fixed parity.
Hence, in full generality, these factor polynomials must
be implemented by rescaling by a constant and using a
tool like generalized QSP.

In more detail, we can implement an arbitrary factor
polynomial Rj(x) by rescaling as

Rj(x)

∥Rj∥[−1,1]
, (31)

which guarantees that this is bounded in magnitude by 1.
We can then block-encode this rescaled polynomial with
generalized QSP. As we discussed in Sec. IIA, the req-
uisite query depth of this procedure is ≤ 2⌈d/2k⌉. Note
however that this simplifies if Rj(x) is of fixed parity and
can be implemented with standard QSP; in this simpler
case, the query depth is at most ⌈d/2k⌉.

2 Note that the factorization constant is fundamentally a function
of the factor polynomials {Rj(x)}. However, for brevity of no-
tation, we denote it as a function of R(x).

Then, to estimate z = tr
(
ρkR(ρ)

)
, we block encode the

k rescaled factor polynomials Rj(x)/∥Rj∥[−1,1] in paral-
lel and execute the parallel QSP circuit of Fig. 3, which
produces an estimate of

tr

ρk k∏
j=1

∣∣∣∣∣ Rj(ρ)

∥Rj∥[−1,1]

∣∣∣∣∣
2
 =

tr
(
ρkR(ρ)

)∏k
j=1 ∥Rj∥2[−1,1]

=
z

K(R)2
,

(32)

where K(R) :=
∏k

j=1 ∥Rj∥[−1,1] is the factorization con-

stant, which depends on the chosen factorization of R(x).
In order to resolve z to additive error ϵ, it suffices to re-
solve Eq. (32) to additive error ϵ/K(R)2. According to
Theorem III.1, this requires a number of measurements
O
(
K(R)4/ϵ2

)
.

Theorem III.2 furnishes the following algorithm for es-
timating the trace z = tr

(
ρkR(ρ)

)
, whose pseudocode we

present in Algorithm 1. The first step is to factorize R(x),
either analytically or numerically. This can be achieved
numerically by determining the roots of R(x) by com-
puting the eigenvalues of its companion matrix [45]; for
a degree-d polynomial, this requires O(d3) time and can
be performed as a classical pre-computation step. The
next step is to implement the factor polynomials with
QSP, and then finally run the parallel QSP circuit as per
Theorem III.1 to obtain an estimate of z.

Algorithm 1: Parallel Quantum Signal
Processing

Input: (1) Access to a state ρ and a block encoding of
ρ; (2) a polynomial R(x) of even degree d,
that is real and non-negative over x ∈ R.

Output: An estimate of z = tr
(
ρkR(ρ)

)
to additive

error ϵ
Cost : O(K(R)4/ϵ2) executions of a circuit of

width O(k) and query depth O(d/k),

where K(R) =
∏k

j=1 ∥Rj∥[−1,1] is a
constant that depends on the chosen
factorization of R(x).

Procedure:
1 Classically determine a factorization

R(x) =
∏k

j=1 |Rj(x)|2, such that deg(Rj) ≤ ⌈d/2k⌉
for all j;

2 Using QSP, construct block encodings of Rj(ρ)
(possibly rescaled as in Eq. (31));

3 Run the parallel QSP circuit of Fig. 3 a number of

times O
(
K(R)4/ϵ2

)
.

We will refer to the number of measurements required
by parallel QSP as its measurement cost. From Theo-
rem III.2, this is O

(
K(R)4/ϵ2

)
, which crucially depends

on the chosen factorization of R(x) through the factoriza-
tion constant K(R). The factorization constant measures
the cost of implementing the factor polynomials, which
in general requires rescaling. A poor choice of factor-
ization can result in this constant scaling exponentially
in the degree d, dashing any quantum advantage pro-
vided by this protocol. For instance, by factorizing the
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order d Chebsyshev polynomial (of the first kind) into
two factor polynomials composed of its positive-valued
and negative-valued roots respectively, the resulting fac-
torization constant scales as 2O(d).

Therefore, to minimize the measurement cost in prac-
tice, it is best to select a low-norm factorization of
R(x), whose factorization constant scales at worst as
poly(d)2O(k), rather than 2O(d). This can be achieved
by selecting factor polynomials of modest norm, which
generally requires some analytic knowledge of the poly-
nomial’s structure.3

In addition, as we remarked in the proof of Theo-
rem III.2, while in general the query depth is upper
bounded by 2⌈d/2k⌉, if the factor polynomials can all
be chosen to be of definite parity, then they can be im-
plemented through standard QSP with a query depth
at most ⌈d/2k⌉. Nonetheless, any realization of parallel
QSP will attain a query depth scaling as O(d/k). This is
because any circuit that prepares a degree-d polynomial
R(ρ) requires O(d) instances of ρ, whether arranged in
parallel or in series. If these instances are parallelized
over k threads, the query depth across the threads must
be at least O(d/k).

C. Remarks

As presented, the parallel QSP algorithm reduces the
query depth needed to compute the trace z = tr

(
ρkR(ρ)

)
.

While a standard QSP implementation of the polynomial
ρkR(ρ) (which has definite parity because R(x) is even)
requires a query depth k + d, parallel QSP requires a
query depth at most 2⌈d/2k⌉ ≈ d/k. This shrinks the
query depth by a factor ≈ k, yet requires increasing the
width to O(k) and the number of measurements by a
factor K(R)4. As K(R) is a product of k function norms,
it generally scales as 2O(k). Thus, parallel QSP enables
a trade-off between quantum and classical resources, and
is most suitable for platforms limited by short coherence
times.

Interestingly, this trade-off is reminiscent of that en-
countered in quantum circuit cutting [27, 46]. In that
context, a quantum circuit is cut across K wires to de-
compose it into circuits of smaller depth and/or width,
which are repeatedly executed to simulate the origi-
nal quantum circuit. The corresponding measurement
overhead scales as 2O(K), resembling that of parallel
QSP. Likewise, parallel QSP shares similarities with the
randomized QSP algorithms presented in Refs. [47–49].

3 That said, low-norm factorizations are not necessarily rare. For
instance, it can be shown that any infinite family of real poly-
nomials whose roots partition the interval [−1, 1] into segments
of size O(1/d) admit factorizations with norms ∥Rj∥[−1,1] =
poly(d). This can generically be achieved by interleaving the
roots of the factor polynomials.

These algorithms randomly sample over QSP polyno-
mials of different degrees and reduce the average de-
gree/query depth. However, while parallel QSP reduces
the maximal query depth, these randomized algorithms
do not, as high-degree polynomials are still sampled.
This makes parallel QSP better suited for quantum hard-
ware constrained by coherence times, where deep circuits
are out of reach.
Furthermore, as currently presented, the scope of par-

allel QSP is limited to functions of a density matrix. This
follows from the use of the generalized swap test, which
enables the multiplication of density matrices arranged
in parallel. This limited scope is unsurprising: if parallel
QSP could be directly applied to an arbitrary operator,
then one could apply it to Hamiltonian simulation and
violate the no-fast forwarding theorem [50] which for-
bids circuit depths sub-linear in the simulation time [51].
Nonetheless, parallel QSP can still be applied to a general
operator if it is encoded in a density matrix, such as a
Hamiltonian encoded in a thermal state ρ ∝ e−βH or the
state ρ ∝ H+cI considered in sample-based Hamiltonian
simulation [52].

IV. PARALLEL QSP FOR PROPERTY
ESTIMATION

A noteworthy application of QSP is estimating prop-
erties of a quantum state, expressed as tr(f(ρ)) for a
function f(ρ). For instance, the von Neumann entropy
is captured by the function f(ρ) = −ρ ln ρ. In practice,
such a property can be estimated with QSP by imple-
menting a polynomial P (ρ) ≈ f(ρ), and approximating
the trace using the techniques of Sec. II C. This approach
has established algorithms for evaluating the von Neum-
man entropy [36], Rényi entropies [32], fidelities [34], and
other related properties.
However, as currently framed, parallel QSP suffers

from two limitations that render it inapplicable to general
property estimation: parallel QSP (1) applies to a lim-
ited class of polynomials xkR(x) where R(x) is real and
non-negative over x ∈ R, and (2) requires knowledge of
a low-norm factorization of R(x) to achieve a reasonable
measurement cost (e.g., poly(d)2O(k) rather than 2O(d)).
In this section we show how to overcome both of these

challenges by developing a method that enables parallel
QSP to accommodate arbitrary polynomials, while main-
taining a query depth O(d/k) and guaranteeing a rea-
sonable measurement cost. This dramatically expands
the class of polynomials amenable to parallel QSP, and
furnishes property estimation algorithms with reduced
query depth.

A. Prelude

To formalize our problem of interest, suppose we wish
to estimate a property by the trace of a real, degree-d
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polynomial P (x):

w = tr(P (ρ)), (33)

where

P (x) =

d∑
n=0

anx
n, ∥P∥[−1,1] ≤ 1. (34)

For a general P (x), estimating w with standard QSP
requires a query depth 2d = O(d), and also a number of
measurements O(1/ϵ2) to resolve w with additive error ϵ.
In contrast, here we will use parallel QSP to parallelize
this computation over k threads, and achieve a query
depth O(d/k + k). The resulting measurement cost will
depend on the chosen decomposition and factorization of
P (x).
As we remarked above, parallel QSP cannot be directly

applied to an arbitrary polynomial P (x). Instead, in or-
der to parallelize the computation over k threads, we split
P (x) into a sum of two constituent polynomials:

P (x) =

k−1∑
n=0

anx
n + xk

d∑
n=k

anx
n−k

=: P<k(x) + xkP≥k(x).

(35)

where,

P<k(x) :=

k−1∑
n=0

anx
n, P≥k(x) :=

d−k∑
n=0

an+kx
n, (36)

are the constituent polynomials of P (x). P<k(x) and
P≥k(x) are real polynomials of degree k − 1 and d − k,
respectively. With this decomposition, the desired prop-
erty can be written as a sum of two constituent traces

w = w<k + w≥k,

w<k = tr(P<k(ρ)), w≥k = tr
(
ρkP≥k(ρ)

)
.

(37)

Therefore, to estimate w, it will equivalently suffice to
estimate w<k and w≥k.
Importantly, w<k is the trace of a polynomial of degree

k−1, which can be easily estimated with standard QSP at
query depth 2(k−1) and width O(1). On the other hand,
w≥k is the trace of ρk times a polynomial of degree d −
k, which nearly fits into the framework of parallel QSP.
By incorporating appropriate algebraic manipulations to
ensure that P≥k(x) is non-negative, we will estimate w≥k

with parallel QSP at a query depth ≈ (d − k)/k < d/k
and circuit width O(k). Therefore, the overall requisite
query depth to estimate w is guaranteed to never exceed
≈ max{2k, d/k}. In practice, k ≪ d (e.g., a large degree
polynomial parallelized over a few threads), in which case
the query depth reduces to ≈ d/k.

In this manner, property estimation with parallel QSP
can be viewed as a hybrid of standard and parallel QSP,
where the low degree terms are estimated with standard

QSP, and the higher degree terms with parallel QSP. Be-
low, we will investigate this procedure more closely. We
first consider the case in which P≥k(x) is non-negative
and hence directly amenable to parallel QSP. We next
show that even if P≥k(x) is not non-negative, it can be
decomposed into a basis of non-negative polynomials and
thus made amenable to parallel QSP. In both situations,
we include bounds on the requisite query depth and mea-
surement costs to estimate w to a desired level of error. In
the first situation, the cost crucially depends on the fac-
torization of P≥k(x) as per Theorem III.2. In the second
case, the measurement cost depends on the factorization
of our purported decomposition; we prove the existence
of a low-norm factorization such that this contribution
scales as O(d42O(k)/k2).
Lastly, as we will see in the following, although

P (x) is bounded as ∥P∥[−1,1] ≤ 1, the constituent
polynomials are not necessarily bounded the same:
∥P<k∥[−1,1], ∥P≥k∥[−1,1] ≰ 1. As a result, the measure-
ment cost of estimating w will also depend on the norms
∥P<k∥[−1,1] and ∥P≥k∥[−1,1]. We prove in Appendix C
that for any bounded polynomial P (x), its constituent
polynomials are upper bounded as

sup
P (x), ∥P∥[−1,1]≤1

∥∥P<k

∥∥
[−1,1]

≤ O

(
dk−1

(k − 1)!

)
,

sup
P (x), ∥P∥[−1,1]≤1

∥∥P≥k

∥∥
[−1,1]

≤ O

(
dk

k!

√
d

k

)
.

(38)

Therefore, for k = O(1), it is necessarily the case that
∥P<k∥[−1,1], ∥P<k∥[−1,1] = O(poly(d)) scales at worst as
a polynomial in d. Moreover, we emphasize that these are
worst case bounds, and that many polynomials of interest
have constituent polynomials with much smaller norms.
For example, the polynomial approximation to the expo-
nential function e−β(x+1) (e.g., for thermal state prepa-
ration) has constituent polynomials both upper bounded
in magnitude by O(1), independent of d.

B. Estimation by Direct Application of Parallel
QSP

If P≥k(x) is non-negative, then we can use the above
intuition to estimate the property w = tr(P (ρ)) by a
direct application of parallel QSP, and achieve a query
depth ≈ d/k:

Theorem IV.1 (Parallel QSP for Property Estimation:
Direct Application). Consider a real polynomial P (x) of
degree d, that is bounded as ∥P∥[−1,1] ≤ 1. Let P (x)
decompose according to Eq. (35) as

P (x) = P<k(x) + xkP≥k(x), (39)

and suppose that P≥k(x) is non-negative over x ∈ R.
By invoking parallel QSP across k threads, we can esti-
mate w = tr(P (ρ)) with query depth at most max{2(k −
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1), 2⌈d−k
2k ⌉} ≲ max{2k, d/k} = O(d/k + k). The number

of measurements required to resolve w to additive error ϵ
is

O

(∥∥P<k

∥∥2
[−1,1]

+K (P≥k)
4

ϵ2

)
, (40)

where K (P≥k) is the factorization constant defined in
Eq. (29) and depends on the chosen factorization of
P≥k(x).

Proof. Decompose w = w<k + w≥k as per Eq. (37). We
then want to estimate w<k and w≥k each to error ≤ ϵ/2,
such that their sum estimates w with error at most ϵ.
First, one can estimate w<k to error ϵ/2 with stan-

dard QSP, using for instance a Hadamard test. Because
P<k(x) is a real polynomial of degree k−1 and indefinite
parity, this can be achieved with query depth 2(k − 1),

and a number of measurements O
(
∥P<k∥2[−1,1]/ϵ

2
)
.

Next, if P≥k(x) is non-negative over x ∈ R, then
the constituent trace w≥k obeys the conditions of The-
orem III.2 and can be directly estimated with parallel
QSP. Because P≥k(x) is a polynomial of degree d − k,

this can be achieved at a query depth 2⌈d−k
2k ⌉, and a

number of measurements O
(
K(P≥k)

4/ϵ2
)
.

In aggregate, the maximal query depth is max{2(k −
1), 2⌈d−k

2k ⌉}, and the total number of measurements is

O

∥∥P<k

∥∥2
[−1,1]

ϵ2

+O

(
K(P≥k)

4

ϵ2

)
. (41)

Evidently, the measurement cost of Theorem IV.1 de-
pends on the quantities ∥P<k∥[−1,1] and K(P≥k), which
necessarily depend on the polynomial P (x) under con-
sideration. According to the bounds of Eq. (38), we can
guarantee that for any such polynomial, ∥P<k∥[−1,1] ≤
poly(d), implying that this term grows polynomially in
d, even in the worst case. On the other hand, as we
mentioned in Sec. III B 1, minimizing K(P≥k) requires
determining a low-norm factorization of P≥k(x), whose
factorization constant is not prohibitively large.

For numerical intuition, we have developed code to im-
plement parallel QSP according to Theorem IV.1. Pro-
vided a number of threads k and a polynomial P (x),
this code decomposes P (x) into constituent polynomials
P<k(x) and P≥k(x), factors P≥k(x) across k threads, and
then determines the corresponding QSP phases of the fac-
tor polynomials. Our code can be found on GitHub at
Ref. [53]; see Appendix B for more details.

C. Estimation by Parallel QSP and Decomposition
into a Well-Behaved Basis

For an arbitrary polynomial P (x), the constituent
polynomial P≥k(x) is not necessarily non-negative, which

renders Theorem IV.1 inapplicable. Likewise, while sim-
ply factorizing P≥k(x) can be done efficiently, guarantee-
ing that this corresponds to a modest factorization con-
stant is more difficult, and in general requires knowledge
about the structure of P≥k(x). If either of these criteria
are unsatisfied, then as we show here, parallel QSP can
still be applied by taking special pre-computation steps
to reduce the problem back to Theorem IV.1.
We achieve this by decomposing P≥k(x) into a basis

of polynomials that are each amenable to parallel QSP
and known to admit a low-norm factorization. We ad-
ditionally prove that the measurement cost incurred by
this factorization scales asO(d42O(k)/k2), which crucially
maintains polynomial scaling in d. This enables paral-
lelization of a large class of property estimation problems,
and furnishes the main result of this paper:

Theorem IV.2 (Parallel QSP for Arbitrary Property
Estimation: Definite Parity). Let P (x) be a real poly-
nomial of degree d and definite parity, that is bounded as
∥P∥[−1,1] ≤ 1. By invoking parallel QSP across k threads,
where k has the same parity as d, we can estimate

w = tr(P (ρ)) (42)

with a circuit of width O(k) and query depth at most
⌊d−k

2k ⌋+k−1 = O(d/k+k). The number of measurements
required to resolve w to additive error ϵ is

O

(
∥P<k∥2[−1,1]

ϵ2
+

∥P<k∥2[−1,1]d
4
(
1 +

√
2
)4k

k2ϵ2

)

= O

(
∥P<k∥2[−1,1] + ∥P≥k∥2[−1,1]d

42O(k)

ϵ2

)
.

(43)

For brevity, we defer the full proof of this theorem
to Appendix E. As an overview, the proof works by first
decomposing P≥k(x) into the basis of Chebyshev polyno-
mials. By then using properties of the Chebyshev poly-
nomials (specifically, their composition and product rela-
tions), we can re-express P≥k(x) as a linear combination
of products of squared Chebyshev polynomials. These
products are each amenable to parallel QSP and clearly
exhibit a low-norm factorization, contributing a factor
of O(d42O(k)/k2) to the measurement cost. In addition,
as the Chebyshev polynomials are real and of definite
parity, they can be implemented directly with QSP and
correspond to a query depth ≈ d/2k, in contrast to the
the query depth ≈ d/k for general polynomials according
Theorem IV.1.
We can also extend Theorem IV.2 to polynomials of

indefinite parity, which yields an analogous result:

Theorem IV.3 (Parallel QSP for Arbitrary Property
Estimation: Indefinite Parity). Let P (x) be a real poly-
nomial of degree d, that is bounded as ∥P∥[−1,1] ≤ 1. By
invoking parallel QSP across k threads, we can estimate

w = tr(P (ρ)) (44)
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with a circuit of width O(k) and query depth at most⌊
d−k

2(k−1)

⌋
+ k − 2 ≈ d/2k + k = O(d/k + k). The number

of measurements required to resolve w to additive error ϵ
is

O

(
∥P<k∥2[−1,1] + ∥P≥k∥2[−1,1]d

42O(k)

ϵ2

)
. (45)

Proof. Decompose P (x) into its even and odd compo-
nents: P (x) = Peven(x) + Podd(x). These are both
bounded as ∥Peven∥[−1,1], ∥Podd∥[−1,1] ≤ ∥P∥[−1,1] ≤ 1
by the triangle inequality. Therefore, we can apply
Theorem IV.2 to estimate the traces tr(Peven(ρ)) and
tr(Podd(ρ)) each to additive error ϵ/2, such that their
sum approximates tr(P (ρ)) to error ϵ.

However, Theorem IV.2 requires that k have the same
parity as the polynomial whose trace is being estimated.
This is not possible for both Peven(x) and Podd(x) given
only a single value of k. Thus, if k is even (odd), then es-
timate tr(Peven(ρ)) over k (k−1) threads and tr(Podd(ρ))
over k− 1 (k) threads. This amounts to replacing k with
k − 1 in the requisite query depth and number of mea-
surements. As per Theorem IV.2, this corresponds to a
query depth at most

⌊
d−k+1
2(k−1)

⌋
+ k− 2 = O(d/k+ k), and

a total number of measurements

O

(
∥P<k∥2[−1,1] + ∥P≥k∥2[−1,1]d

42O(k)

ϵ2

)
. (46)

Ultimately, Theorem IV.3 is applicable to any real,
bounded polynomial P (x), with a dependence only on
the norms of the constituent polynomials. Therefore, this
result encompasses most properties of interest and ren-
ders parallel QSP applicable to a broad class of problems,
to which we now turn.

V. APPLICATIONS

Here we use parallel QSP to develop parallelized algo-
rithms for various problems in property estimation. We
highlight the estimation of Rényi entropy, general poly-
nomials, partition functions, and the von Neumman en-
tropy.

A. Rényi Entropy: Integer Order

One of the most straightforward demonstrations of
parallel QSP is the computation of the Rényi entropy.
For a state ρ, the Rényi entropy of order α is defined as
Sα(ρ) = 1

1−α log
(
tr(ρα)

)
for α > 0, α ̸= 1. The Rényi

entropy provides a probe of entanglement in both quan-
tum and classical simulation [18, 40, 54–56], and can be
used to approximate the spectrum of ρ through entan-
glement spectroscopy [17].

Let us first consider estimating Sα(ρ) for integer or-
ders α ≥ 2, deferring non-integer orders to Sec. VD.
In this case, prior work has introduced QSP-based algo-
rithms that implement ρα as a QSP polynomial, enabling
the estimation of Sα(ρ) with query depth α and width
O(1) [32, 36, 57]. On the other hand, Refs. [17, 22, 40]
invoke the generalized swap test across α systems to eval-
uate Sα(ρ), corresponding to a query depth O(1) and
width O(α). Here, we will illustrate how parallel QSP
interpolates between these two regimes, achieving query
depth O(α/k) and width O(k).
To demonstrate this, note that the polynomial of inter-

est here is P (ρ) = ρα. This is a monomial that trivially
factorizes into a product of smaller monomials. Following
this logic, we arrive at the following theorem:

Theorem V.1 (Parallel QSP for Estimating Rényi En-
tropy: Integer Order). For positive integers α ≥ 2, one
can invoke parallel QSP across k to estimate the Rényi
entropy Sα(ρ) =

1
1−α log

(
tr(ρα)

)
with a circuit of query

depth ⌊ 1
k ⌊

α−k
2 ⌋⌋+1 = O(α/k) and width O(k). The num-

ber of measurements required to achieve additive error ϵ

is O
(

1
s2αα2ϵ2

)
where sα = tr(ρα).

Proof. Decompose P (ρ) according to Eq. (35) as

P (ρ) = ρα = ρkρ(α−k) mod 2
∣∣ρ⌊α−k

2 ⌋∣∣2, (47)

where we assume α > k (otherwise there is no need to
parallelize). This nearly fits into the family of polynomi-
als amenable to parallel QSP as per Theorem III.1, the
only difference being the additional factor ρ(α−k) mod 2.
This factor is only relevant if (α−k) mod 2 = 1, in which
case it can be easily incorporated by including an addi-
tional thread in the initial state ρ into the generalize swap
test stage, which increases the threads to k + 1 and still
equates to a width O(k).
This decomposition corresponds to constituent polyno-

mials P<k(ρ) = 0 and P≥k(ρ) = ρ⌊
α−k

2 ⌋. While P<k(ρ) is
non-existent, P≥k(ρ) is bounded as ∥P≥k∥[−1,1] ≤ 1 and
factorizes into a product of monomials:

ρ⌊
α−k

2 ⌋ =

⌊α−k
2 ⌋ mod k∏
j=1

ρ⌊
1
k ⌊α−k

2 ⌋⌋+1 ×
k∏

j′=⌊α−k
2 ⌋ mod k+1

ρ⌊
1
k ⌊α−k

2 ⌋⌋.

(48)
These factor polynomials are all real and of definite par-
ity, and thus can be implemented directly via QSP with
a query depth at most ⌊ 1

k ⌊
α−k
2 ⌋⌋+1 = O(α/k). Because

these monomials are bounded in magnitude by 1, the cor-
responding factorization constant is simply K(P≥k) = 1.
Plugging these values into Theorem IV.1, the measure-
ment cost of estimating sα = tr(ρα) to additive error ϵ′

is O(1/ϵ′2).
However, our quantity of interest is Sα(ρ) =
1

1−α log(sα). Ref. [32] shows that an estimate s̃α of sα
to within multiplicative error ε (i.e., |s̃α/sα − 1| ≤ ε)
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provides an approximation to Sα(ρ) with additive error
ε/(α− 1): ∣∣∣ 1

1− α
log(s̃α)− Sα(ρ)

∣∣∣ ≤ ε

α− 1
. (49)

Therefore, to achieve additive error ϵ in the estimate of
the Rényi entropy, select ϵ′ = sαε = sαϵ(α − 1), which
translates to a total number of measurements

O
( 1

s2αα
2ϵ2

)
. (50)

As a hybrid of QSP and the generalized swap test,
parallel QSP combines the strengths of both algorithms
in estimating the Rényi entropy. Its query depth O(α/k)
and width O(k) provide a smooth interpolation between
the circuit requirements of these approaches, allowing for
full use of one’s available quantum resources.

B. General Polynomials in the Monomial Basis

Above, we used parallel QSP to parallelize the compu-
tation of the trace of a monomial tr(ρα). This naturally

extends to more general polynomials P (ρ) =
∑d

n=0 cjρ
n

by parallelizing each monomial. Following this line of
thought, we can prove the following:

Theorem V.2 (Parallel QSP for Estimation of Gen-
eral Polynomial Traces). For a degree-d polynomial

P (x) =
∑d

n=0 cnx
n, one can invoke parallel QSP across k

threads to estimate tr(P (ρ)) with a circuit of query depth
⌊ 1
k ⌊

d−k
2 ⌋⌋+ 1 = O(d/k) and width O(k). The number of

measurements required to attain additive error ϵ is

O

(
∥c∥21
ϵ2

)
, (51)

where ∥c∥1 =
∑d

n=0 |cn| is the 1-norm of the polynomial
coefficients.

Proof. Our aim is to parallelize the computation of

tr(P (ρ)) =
∑d

n=0 cn tr(ρ
n) by using the method of The-

orem V.1 for parallelizing the monomial trace tr(ρn).
While one could achieve this by estimating each trace
tr(ρn) in sequence (from n = 0 up to n = d), a
more efficient approach is furnished by importance sam-
pling. That is, sample an integer n from the distribution

p(n) = |cn|/∥c∥1 where ∥c∥1 =
∑d

n=0 |cn|, and evaluate
the estimator of tr(ρn) (i.e. the measurement result of
the parallel QSP circuit). As we show in Appendix D,
this procedure provides an estimator for tr(P (ρ))/∥c∥1.
Then, estimating tr(P (ρ)) to additive error ϵ is equiva-
lent to estimating tr(P (ρ))/∥c∥1 to error ϵ/∥c∥1, which
requires a measurement cost O(∥c∥21/ϵ2).
In measuring the estimator of each monomial trace

tr(ρn), employ parallel QSP according to Theorem V.1.
The corresponding query depth is at most ⌊ 1

k ⌊
d−k
2 ⌋⌋+1 =

O(d/k), and the circuit width is O(k).

As the measurement cost grows with ∥c∥1, this ap-
proach is best suited for polynomials where this 1-norm
is not prohibitively large. For many polynomials of in-
terest, ∥c∥1 is poly(d) or even just O(1). For instance, a
truncation of e−βx achieves ∥c∥1 = O(eβ), independent
of d. However, ∥c∥1 can grow exponentially with d for
certain polynomials, in which case this approach is pro-
hibitively costly. For example, the order d Chebyshev
polynomial Td(x) has 1-norm ∥c∥1 = 2O(d). In this case,
it is better to invoke Theorem IV.3 to estimate tr(P (ρ)),
which applies to all polynomials agnostic to their 1-norm,
and achieves a cost that necessarily scales polynomially
in d.

C. Partition Function

A problem to which Theorem V.2 applies nicely is the
estimation of tr

(
e−βρ

)
. This can be used to evaluate a

partition function Z = tr
(
e−βH

)
when the Hamiltonian

H is encoded in a density matrix as ρ ∝ H + cI, such
as in sample-based Hamiltonian simulation [52] or den-
sity matrix exponentiation [58]. Here we can prove the
following:

Theorem V.3 (Estimation of tr
(
e−βρ

)
with Parallel

QSP). One an invoke parallel QSP across k threads
to estimate tr

(
e−βρ

)
with a circuit of query depth

O
(

β
k log(βD/ϵ)

)
and width O(k), where D = dim(ρ).

To achieve additive error ϵ, the requisite number of mea-

surements is O
(
e2β

ϵ2

)
.

Proof. Consider the polynomial P (x) =
∑d

n=0
(−β)n

n! xn.

This approximates the exponential e−βx with an additive
error at most ϵ′ over x ∈ [0, 1] by choosing a degree d =
O(β log(β/ϵ′)) [59]. As our goal is to evaluate tr(P (ρ)) to
error ϵ, select a polynomial error ϵ′ = ϵ/2D, where D =
dim(ρ). This guarantees that | tr(P (ρ)) − tr

(
e−βρ

)
| ≤

| tr(ϵ′)| = ϵ/2. Therefore, if we can evaluate tr(P (ρ)) to
error ϵ/2, we will approximate tr

(
e−βρ

)
to error ϵ.

To perform this evaluation, we first note the 1-norm
bound:

∥c∥1 =

d∑
n=0

βn

n!
< eβ . (52)

According to Theorem V.2, we can estimate tr(P (ρ))

with a circuit of query depth O(d/k) = O(βk log(βD/ϵ))
and width O(k), and the requisite number of measure-
ments is

O

(
∥c∥21
(ϵ/2)2

)
= O

(e2β
ϵ2

)
. (53)

Relative to standard QSP, parallel QSP reduces the
query depth by a factor O(k), without worsening the
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scaling of the measurement cost. This is because e−βx

admits a Taylor series whose coefficients have a 1-norm
bounded by O(1), independent of the truncation degree.

D. Rényi Entropy: Non-Integer Order

It is also of interest to compute the Rényi entropy for
non-integer α. Rather straightforwardly, this may be
acheived by implementing ρα as a QSP polynomial and
estimating its trace [32, 36]. This however is more costly
to compute than the case of integer order because the
function xα is non-analytic at x = 0, and hence can only
be well approximated by a polynomial away from this
singular point. Due to this singularity, polynomial ap-
proximations to xα have coefficients whose 1-norm scales
exponentially as ∥c∥1 = 2O(d) [22], thus rendering The-
orem V.2 impractical. In this case, it is advantageous
to instead use Theorem IV.3, whose measurement cost is
guaranteed to scale polynomially in d.
We can use this reasoning to prove the following the-

orem for estimating the Rényi entropy. For generality,
we state this theorem for a degree-d polynomial approx-
imation of xα. As we will discuss after the proof, the
necessary degree depends on properties of ρ (condition
number, rank, etc.).

Theorem V.4 (Parallel QSP for Estimating Rényi En-
tropy: Non-Integer Order). Suppose α > 0 is a non-
integer, and let P (x) be a degree-d polynomial approx-
imation to xα. Then, one can invoke parallel QSP
across k threads to estimate the Rényi entropy Sα(ρ) =
1

1−α log
(
tr(ρα)

)
as S̃α(ρ) = 1

1−α log
(
tr(P (ρ))

)
, with

a circuit of query depth at most
⌊

d−k
2(k−1)

⌋
+ k − 2 =

O(d/k + k) and width O(k). The number of measure-

ments necessary to estimate S̃α(ρ) to additive error ϵ is

O

((
dk+2

(k + 1)!

)2
d

k

1

s̃2αϵ
2(α− 1)2

)
= O

(
poly(d)

s̃2αϵ
2(α− 1)2

)
,

(54)
where s̃α = tr(P (ρ)) ≈ tr(ρα).

Proof. Without a specific polynomial approximation to
xα (which we will address after this proof) nor an analytic
factorization thereof, we can invoke the generic construc-
tion of Theorem IV.3, which is applicable to all polyno-
mials. This reduces the query depth to

⌊
d−k

2(k−1)

⌋
+k−2 =

O(k+ d/k). Inserting the generic bounds of Eq. (38), we
find that the measurement cost to estimate s̃α = tr(P (ρ))
to additive error ϵ′ is

O

((
dk

k!

√
d

k

)2
d4

k2
(1 +

√
2)4k

ϵ′2

)

= O

((
dk+2

(k + 1)!

)2
d

kϵ′2

)
.

(55)

where the second line follows from the factorial k! domi-
nating the exponential 2O(k). Then, mirroring the proof
of Theorem V.1, in order to estimate S̃α(ρ) to additive
error ϵ, it suffices to select ϵ′ = sαε = sαϵ(α − 1), which
equates to a total number of measurements

O

((
dk+2

(k + 1)!

)2
d

k

1

s̃2αϵ
2(α− 1)2

)
. (56)

Lastly, note that we have used the generic bounds of
Eq. (38). Although these are worst-case, and could possi-
bly be tightened for a specific polynomial approximation,
we expect them to be relatively tight for polynomial ap-
proximations to functions with singularities like xα.

As anticipated, parallel QSP reduces the depth by a
factor of O(k), and increases the number of measure-
ments by a factor O(poly(d)). To precisely approximate
the Rényi entropy using this result, we need to determine
a sufficient polynomial approximation to xα. Refs. [5, 57]
provide an odd polynomial approximation to xα that suf-
fers additive error at most ϵ over x ∈ [δ, 1] for some
δ > 0, and show that the degree of this polynomial is
O(α + 1

δ log(1/ϵ)). Using this polynomial, there are two
predominant approaches for Rényi entropy estimation.

First, as in Ref. [32], one can choose δ to be the small-
est non-zero eigenvalue of ρ (or a lower bound thereof),
such that P (ρ) ≈ ρα over the support of ρ. This choice
is equivalent to setting δ = 1/κ where κ is the condition
number of ρ. Then, to estimate Sα(ρ) to error ϵ, we can
select ϵ′ = sαϵ|α−1|/2D where D = dim(ρ), correspond-
ing to a degree d = O(α + κ log(D/|α− 1|sαϵ)). This
choice guarantees that |s̃α − sα| = | tr(P (ρ))− tr(ρα)| ≤
tr(ϵ′) = sαϵ|α − 1|/2, such that |S̃α(ρ) − Sα(ρ)| ≤ ϵ/2
by Eq. (49). Therefore, to estimate Sα(ρ) to error ϵ,

it suffices to estimate S̃α(ρ) to error ϵ/2. According to
Theorem V.4, the corresponding parallel QSP algorithm
requires a number of measurements

O

((
dk+2

(k + 1)!

)2
d

k

1

s̃2αϵ
2(α− 1)2

)

= O

(
poly(α, κ, log(D))

s2αϵ
2(α− 1)2

)
.

(57)

On the other hand, if the rank r = rank(ρ) is known,
then as Ref. [36] shows, one can alternatively select a
value δ = O(1/r) while maintaining an accurate approx-
imation of the Rényi entropy. Here, one can again select
ϵ′ = sαϵ|α − 1|/2r, such that |s̃α − sα| = | tr(P (ρ)) −
tr(ρα)| ≤ tr(ϵ′) = sαϵ|α − 1|/2, implying |S̃α(ρ) −
Sα(ρ)| ≤ ϵ/2 by Eq. (49). These choices correspond to
a polynomial degree d = O(α + r log(r/sαϵ|α− 1|)). As

above, it suffices to estimate S̃α(ρ) to error ϵ/2, in which
case Theorem V.4 indicates that parallel QSP necessi-
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tates a number of measurements

O

(
poly(α, r)

s2αϵ
2(α− 1)2

)
. (58)

This scales more favorably than the above approach lead-
ing to Eq. (57), because r ≤ κ for any density matrix.

In both cases, the query depth is reduced relative to
the associated sequential algorithms [32, 36, 60], at the
expense of increasing the measurement cost by a factor
O(poly(α, κ, log(D))) or O(poly(α, r)). As such, these
methods are best deployed on states with small condi-
tion number or low-rank, e.g. κ, r = O(polylog(D)),
which arise in a variety of experimental [61–63], com-
putational [64–66], and theoretical contexts [58, 67]. In
these cases, quantum algorithms for Rényi entropy esti-
mation achieve an exponential advantage over classical
algorithms, which scale as O(poly(D)) [36, 60]. Fortu-
nately, because the measurement cost of parallel QSP
scales polynomially in κ and r, parallel QSP crucially
retains this exponential speedup.

E. Von Neumann Entropy

Another ubiquitous quantity in quantum physics is the
von Neumann entropy S(ρ) = − tr(ρ ln ρ), which char-
acterizes entanglement [37], defines thermal states [68],
describes phase transitions [69], and dictates the rate at
which information can be transmitted across a quantum
channel [70]. Given such broad interest, QSP-based algo-
rithms have been put forth to estimate the von Neumann
entropy [36, 57], which work by approximating −ρ ln ρ as
a QSP polynomial and taking its trace. Similar to the
situation of the non-integer α-Rényi entropy, the under-
lying function −x lnx is singular at x = 0, and can only
be approximated by a polynomial away from this point.
As such, polynomial approximations to −x lnx also ex-
hibit coefficients whose 1-norm scales exponentially as
∥c∥1 = 2O(d) [22], thus rendering Theorem V.2 impracti-
cal and suggests the use of Theorem IV.3 instead.

We can therefore invoke parallel QSP to prove the fol-
lowing theorem, analogous to Theorem V.4. As above,
we state this for a degree-d polynomial approximation of
−x lnx, where d will depend on the properties ρ, which
we address after the proof.

Theorem V.5 (Parallel QSP for Estimating von Neu-
mann Entropy). Let P (x) be a degree-d polynomial ap-
proximation to −x lnx. Then, parallel QSP enables
the estimation of the von Neumann entropy S(ρ) =

− tr(ρ ln ρ) as S̃(ρ) = tr(P (ρ)), with a circuit of query
depth at most

⌊
d−k

2(k−1)

⌋
+ k − 2 = O(d/k + k) and width

O(k). The number of measurements necessary to esti-

mate S̃(ρ) to additive error ϵ is

O

((
dk+2

(k + 1)!

)2
d

k

1

ϵ2

)
= O

(
poly(d)

ϵ2

)
. (59)

Proof. This proof is nearly identical to Theorem V.4. In
the absence of a specific polynomial approximation to
−x ln(x) nor a factorization thereof, we again apply The-
orem IV.3 to estimate tr(P (ρ)) to additive error ϵ, and
insert the generic bounds of Eq. (38). This reduces the
query depth to

⌊
d−k

2(k−1)

⌋
+ k− 2 = O(d/k+ k) and neces-

sitates a measurement cost

O

((
dk

k!

√
d

k

)2
d4

k2
(1 +

√
2)4k

ϵ2

)
=

O

((
dk+2

(k + 1)!

)2
d

kϵ2

)
.

(60)

Again, we expect the generic bounds to be nearly satu-
rated for polynomial approximations to a singular func-
tion like −x lnx.

As above, parallel QSP reduces the query depth by a
factor O(k) and increases the number of measurements
by a factor poly(d). What remains is to provide a suf-
ficient polynomial approximation to −x lnx. Similar to
the function xα, there exists an odd polynomial approx-
imation to to −x lnx that suffers additive error at most
ϵ′ over x ∈ [δ, 1] for some δ > 0, and the requisite degree
of this polynomial is O( 1δ log(1/ϵ

′)) [5, 36, 57].
Analogous to our treatment of the Rényi entropy,

one can use this polynomial and select δ = 1/κ and
ϵ′ = ϵ/2D, where D = dim(ρ). This guarantees that

|S̃(ρ) − S(ρ)| ≤ ϵ/2 and corresponds to a degree d =

O(κ log(D/ϵ)). It then suffices to estimate S̃(ρ) to error
ϵ/2, in which case Theorem V.5 indicates that parallel
QSP requires query depth O(d/k + k) and a number of

measurements O(poly(κ,logD)
ϵ2 ).

Alternatively, if the rank r = rank(ρ) is known, one
can select δ = O(1/r) and ϵ′ = O(ϵ/r), while maintain-
ing an accurate approximation to the von Neumann en-
tropy [36]. This equates to a degree d = O(r log(r/ϵ)).
Then, Theorem V.5 readily implies that parallel QSP es-
timates S(ρ) with query depth O(d/k+k) and a number

of measurements O(poly(r)ϵ2 ).
Again, these methods are best deployed on states with

κ, r = O(polylog(D)), in which case quantum algorithms
provide an exponential improvement over classical algo-
rithms [36, 60]. Because the measurement cost of parallel
QSP scales as poly(κ, log(D)) or poly(r), parallel QSP
retains this exponential speedup.

VI. DISCUSSION AND CONCLUSION

In this work, we have presented a parallelized version
of quantum signal processing, tailored to property esti-
mation. Our algorithm parallelizes the computation of
a property tr(P (ρ)) over k threads, and reduces query
depth by a factor O(k) while increasing circuit width
by O(k), characterizing a tradeoff between temporal and
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spatial resources in QSP. The core of our construction
rests on the ability to factorize a polynomial of degree d
into a product of k degree-O(d/k) polynomials. Within a
quantum circuit, these polynomials are prepared in paral-
lel and then multiplied together using a generalized swap
test. This methodology is applicable to general polyno-
mials of a density matrix, with a measurement cost that
depends on the chosen factorization. In justification of
its utility, we apply parallel QSP to a variety of prob-
lems in property estimation, ranging from the estimation
of entropies to partition functions.

Our work has important implications for intermediate-
scale quantum computation. First, because parallel QSP
reduces circuit depth, it is well suited for platforms lim-
ited to shallow circuits by short coherence times [71].
Secondly, parallel QSP opens up new opportunities for
co-designing parallel quantum architectures, with ap-
plications in distributed quantum computing [25] and
resource-intensive tasks on near-term devices [72]. In this
context, separate devices perform QSP in parallel and
then send their state to a central device that performs
a swap test, with the key benefit that errors remain iso-
lated across devices until the swap test. Lastly, parallel
QSP can help to reduce the overhead incurred by error
mitigation or error correction. For example, in the struc-
tured, algorithmic-level correction of coherent errors in
QSP [23], parallel QSP reduces the overhead in circuit
depth from O(dn) to O(( dk )

n) when errors are corrected
to order n.

There exist numerous possible improvements to our
parallel QSP algorithm. One limitation is the measure-
ment overhead accrued when parallelizing over a generic
polynomial, which does not always permit a factorization
into polynomials of bounded magnitude on an interval.
While here we circumvented this issue by decomposing
into a well-behaved basis, it remains an open problem to
bound the factorization constant for a generic polynomial
and provide tighter bounds on the resulting measurement
overhead. In addition, a theory of QSP on SU(d) may
prove useful in combining multiple monomials together
[73, 74] with correspondingly better overhead. With an
eye toward improving property estimation algorithms, it
may also prove fruitful to integrate parallel QSP with
randomized measurements techniques [18, 75].

Parallel QSP suggests multiple future directions for
the design of further parallel quantum algorithms. First,

while we discussed parallel QSP in the context of uni-
variate polynomials, one could extend this algorithm to
multivariate polynomials [22] to encompass relevant met-
rics like the fidelity tr

(√√
ρσ

√
ρ
)
and trace distances

1
2 tr(|ρ− σ|n). Although parallel QSP can straightfor-
wardly accommodate products of univariate polynomi-
als by direct substitution into the parallel QSP circuit
(Fig. 3), designing a generic multivariate polynomial is
a more pressing challenge as a general theory of mul-
tivariate QSP has yet to be established [76–78]. Sec-
ondly, beyond polynomial factorization, other forms of
parallelization are also possible. For example, by explor-
ing spatial locality, one could use spline interpolations to
approximate a well-behaved polynomial by lower-degree
polynomials over restricted intervals; implementation of
this idea may require access to projectors that divide
the input space into restricted intervals. In addition, we
note that there exists concurrent work considering depth
reduction of QSP sequences, albeit in the setting of pa-
rameter estimation for calibration [72]. Understanding
the relation of our methods to such ideas remains an in-
teresting open question for future work.
Together, these prospective generalizations of paral-

lel QSP, combined with parallel classical computing [79],
offer utility in other areas, such as the parallel quan-
tum simulation of quantum chemical systems and mate-
rials [80, 81]. Fundamentally, as properties of polynomial
factorizations underlies parallel QSP, this suggests that
other functional analytic properties could be leveraged to
develop new and improved quantum algorithms through
QSP. Given that polynomials have been extensively stud-
ied for centuries, boasting a rich array of properties from
complex analysis to algebraic geometry, further explo-
ration of the connections between polynomials and QSP
may point to novel quantum algorithms.
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Appendix A: Implementation of Arbitrary
Polynomials with Linear-Combination-of-Unitaries

and Generalized QSP

As we mentioned in Sec. IIA, QSP generates polyno-
mials that are restricted to obey the conditions of Eq. (6),
such as having definite parity. However, there exist tech-
niques to expand this class of polynomials and imple-
ment arbitrary polynomials, provided they are bounded
in magnitude.
One method of achieving this is with linear-

combination-of-unitaries (LCU) circuits [59, 82, 83]. In
this context, an LCU circuit is composed of controlled
QSP sequences and allows one to sum together polyno-
mials. This can be used to construct a polynomial of
indefinite parity by summing together its even and odd
components, as we illustrate in Fig. 4. The LCU con-
struction is sequential, implying that for a polynomial
of degree d, the requisite query depth is 2d. However,
an LCU circuit rescales the sum by a constant, and thus
requires amplitude amplification or additional measure-
ments to accommodate for this rescaling. In the context
of parallel QSP, where block encodings are multiplied to-
gether, this rescaling will accumulate exponentially in the
number of threads and increase the measurement cost.

LCU Circuit

FIG. 4. The linear-combination-of-unitaries (LCU) circuit
that encodes a sum of two block encodings. Here U [P1(x)]
and U [P2(x)] block-encode polynomials P1(x) and P2(x), and
are realized through QSP. Note how the sum of these poly-
nomials is rescaled by a factor of 2. Also observe that this
construction is sequential, and thus doubles the query depth.

A more promising approach is the recently introduced
construction of generalized QSP [28]. Generalized QSP
proposes a generalization of QSP sequence (Eq. (4)) that
instead uses controlled block encoding:[
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]
,

[
I 0
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]
. (A1)

By interspersing these with general SU(2) rotations (in
contrast to z-rotations of Eq. (4)), Ref. [28] shows
how the resulting sequence block-encodes a polynomials
P (U [A]), restricted only by the constraint ∥P∥[−1,1] ≤ 1.
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In particular, this construction requires 2d queries to the
block encodings of Eq. (A1) to generate a degree-d poly-
nomial. This alleviates the parity constraint of ordinary
QSP, while also avoiding the rescaling imposed by the
LCU method.

In the context of ordinary QSP, where we assume ac-
cess to a block encoding, generalized QSP applies as
follows. By a technique known as qubitization [4–6],
which itself underlies QSP, there exists a privileged ba-
sis in which a block encoding of A is equivalent to an
x-rotation:

U [A] =

[
A i

√
1−A2

i
√
1−A2 A

]
= eiX arccos(A). (A2)

By then controlling on this block encoding and its inverse
with an additional qubit, we can construct the inputs of
Eq. (A1) needed for generalized QSP. Then, executing
generalized QSP on this, we can encode a polynomial
with coefficients cn:

P (U [A]) =

d∑
n=0

cnU [A]n =

d∑
n=0

cne
iXn arccos(A). (A3)

By projecting the remaining qubit into the |0⟩⟨0| element,
we attain the polynomial

⟨0|P (U [A])|0⟩ =
d∑

n=0

cn cos(n arccos(A))

=

d∑
n=0

cnTn(A) =: P̃ (A)

(A4)

where Tn(x) is the order n Chebyshev polynomial (see
Appendix C for review). As a linear combination of
Chebyshev polynomials, this can represent an arbitrary
degree-d polynomial P̃ (A), provided it is bounded as

∥P̃∥[−1,1] ≤ 1.
Together, these results are summarised as follows. A

degree-d polynomial of definite parity can be imple-
mented directly through QSP with a query depth d. On
the other hand, a degree-d polynomial of indefinite parity
can be implemented via generalized QSP at the expense
of an additional control qubit, access to the inverse block-
encoding unitary U [A]†, and an increased query depth
2d.

Appendix B: Discussion of Code Implementation

The code for our implementation of parallel QSP can
be found at Ref. [53]. With the goal of applying parallel
QSP to the estimation of the property w = tr(P (ρ)), this
code takes as input a degree-d polynomial P (x) and an
integer k ≥ 1 corresponding to the number of threads
over which to parallelize over. The code then executes
the construction of Theorem IV.1: it decomposes P (x)
into constituent polynomials as per Eq. (35), assuming

that P (x) ≥ 0 is non-negative over the real axis. It then
numerically finds the roots of P≥k(x) to factorize it into
k factor polynomials according to Theorem III.2. This
factorization is done arbitrarily and is not optimized to
minimize the factorization constant K(P≥k); this opti-
mization would be an interesting problem to study for
future work.
For each resulting factor polynomials, we run a QSP

phase finding algorithm. Using the |+⟩⟨+| block of a QSP
sequence, this algorithm determines the QSP phases cor-
responding to the even/odd and real/imaginary compo-
nents of the factor polynomials, such that the factor poly-
nomials can be constructed via an LCU circuit. As the
degree of each factor polynomial is reduced to O(d/k), we
can employ a simple phase finding algorithm mirroring
that of Ref. [84]: we estimate the QSP phases by mini-
mizing the sum of the squares error across x ∈ [−1, 1].

Appendix C: Upper Bounds on the Magnitude of
Constituent Polynomials

Here we will prove bounds on properties of the con-
stituent polynomials discussed in Sec. IV. Consider a real
degree-d polynomial P (x) that is bounded in magnitude
by 1 over x ∈ [−1, 1]:

P (x) =

d∑
n=0

anx
n, ∥P∥[−1,1] ≤ 1. (C1)

As in Sec. IV, we split this polynomial into two con-
stituent polynomials, P<k(x) and P≥k(x), as

P (x) =

k−1∑
n=0

anx
n + xk

d∑
n=k

anx
n−k

=: P<k(x) + xkP≥k(x),

(C2)

where

P<k(x) :=

k−1∑
n=0

anx
n, P≥k(x) :=

d−k∑
n=0

an+kx
n, (C3)

are the constituent polynomials of P (x), of degree k − 1
and d− k, respectively.
In order to estimate the trace z = tr(P (ρ)) using par-

allel QSP, we estimate w<k = tr(P<k(ρ)) and w≥k =
tr(P≥k(ρ)) separately. As shown in Sec. IV, the measure-
ment cost of obtaining these estimates depends on the
magnitudes of the constituent polynomials P<k(x) and
P≥k(x). Although ∥P∥[−1,1] ≤ 1, P<k(x) and P≥k(x) are
not necessarily bounded in magnitude by 1. Below, we
show that for any such polynomial P (x), the constituent
polynomials are bounded as

∥P<k∥[−1,1] ≤ O

(
dk−1

(k − 1)!

)
,

∥P≥k∥[−1,1] ≤ O

(
dk

k!

√
d

k

)
.

(C4)



20

Therefore, ∥P<k∥[−1,1], ∥P≥k∥[−1,1] ≤ O(poly(d)). This
implies that the measurement cost of parallel QSP for
property estimation is at worst polynomial in d.
In proving these bounds we will invoke the Chebyshev

polynomials [85]. For context, recall that the nth Cheby-
shev polynomial Tn(x) is a degree n polynomial defined
on |x| ≤ 1 as

Tn(x) = cos(n arccos(x)). (C5)

It is well-established that Tn(x) is a degree n polynomial
of fixed parity (either even or odd, depending on n) and
bounded magnitude |Tn(x)|[−1,1] = 1 [85, 86]. They may
be expressed as polynomials as

Tn(x) =

n∑
j=0

tn,jx
j , (C6)

where tn,j are the corresponding coefficients. It can also
be shown that Tn(x) can be re-expressed as

Tn(x) =
1

2

((
x−

√
x2 − 1

)n
+
(
x+

√
x2 − 1

)n)
. (C7)

The Chebyshev polynomials provide a convenient basis
for expanding functions on x ∈ [−1, 1]. A function F (x)
can be expanded as

F (x) =
c0
2

+

∞∑
n=1

cnTn(x), (C8)

where

cn =
2

π

∫ 1

−1

F (x)Tn(x)√
1− x2

dx (C9)

are the Chebyshev coefficients for all n ≥ 0. These coef-
ficients can be bounded as

|cn| ≤
2

π

∫ 1

−1

∥F∥[−1,1]√
1− x2

dx = ∥F∥[−1,1]. (C10)

Moreover, if F (x) is degree-d polynomial, then this series
truncates at order d.

1. Bound on the Magnitude of P<k(x)

To bound the magnitude of P<k(x), we begin by noting
the result of the following theorems from Ref. [87]:

Theorem C.1 (Bound on Coefficients of Bounded Poly-
nomials; Theorems 16.3.1 and 16.3.2 of Ref. [87]). Let

Td(x) =
∑d

n=0 td,nx
n denote the Chebyshev polynomial

of degree d. Let P (x) =
∑d

n=0 anx
n be a degree-d poly-

nomial that is bounded at the Chebyshev nodes as∣∣P ( cos(πνd ))∣∣ ≤ 1 for ν = 0, 1, ..., d,∣∣P ( cos ( πν
d−1

))∣∣ ≤ 1 for ν = 0, 1, ..., d− 1.
(C11)

Then, for even d, the coefficients are bounded as

|a2j | ≤ |td,2j |
|a2j−1| ≤ |td−1,2j−1|

(C12)

for j = 0, 1, ..., d/2. Analogously, for odd d, the coeffi-
cients are bounded as

|a2j | ≤ |td−1,2j |
|a2j−1| ≤ |td,2j−1|

(C13)

for j = 0, 1, ..., (d−1)/2. Equality is achieved for P (x) =
Td(x).

Applicability of this theorem demands that P (x) be
bounded by 1 at the Chebyshev nodes; this condition
is satisfied for a bounded polynomial ∥P∥[−1,1] ≤ 1 as
we consider here. Therefore, Theorem C.1 indicates that
the coefficients of any such bounded polynomial are nec-
essarily upper bounded in magnitude by the coefficients
of Chebyshev polynomials. To employ this result in prac-
tice, it will be useful to also show that the coefficients of
the Chebyshev polynomials scale as |td,n| ≤ O

(
dn

n!

)
:

Lemma C.1 (Bound on Coefficients of the Chebyshev
Polynomials). The coefficients of the Chebyshev polyno-
mials are bounded in magnitude as

|td,n| ≤
(d+ n)n

n!
= O

(
dn

n!

)
(C14)

Proof. Explicitly, the Chebyshev coefficients are [88]

td,n = (−1)
d−n

2 2n−1d

(
d+n
2 − 1

)
!(

d−n
2

)
! n!

. (C15)

This is upper bounded as

|td,n| = 2n−1d

(
d+n
2 − 1

)
!(

d−n
2

)
! n!

=
2n−1d
d+n
2

(d+n
2

n

)
≤ 2n

(
d+n
2

)n
n!

=
(d+ n)n

n!
= O

(
dn

n!

)
,

(C16)

where we have used that
(
a
b

)
≤ ab

b! .

We can then merge Theorem C.1 and Lemma C.1 to
bound P<k(x) as follows:

Theorem C.2. For any degree-d polynomial P (x) that
is bounded as maxx∈[−1,1] |P (x)| ≤ 1, its constituent
polynomial P<k(x) (as defined in Eq. C3) is necessarily
bounded as

∥P<k∥[−1,1] ≤ O

(
dk−1

(k − 1)!

)
= poly(d). (C17)

Proof. To bound the magnitude of P<k(x), we first note
that the triangle inequality implies

∥P<k∥[−1,1] = max
x∈[−1,1]

∣∣∣∣∣
k−1∑
n=0

anx
n

∣∣∣∣∣ ≤
k−1∑
n=0

|an|. (C18)
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In conjunction with Theorem C.1 and Lemma C.1, we
can bound this as

k−1∑
n=0

|an| ≤
k−1∑
n=0

|td,n| ≤
k−1∑
n=0

O

(
dn

n!

)
= O

(
dk−1

(k − 1)!

)
.

(C19)

Therefore, P<k(x) is necessarily bounded in magni-
tude by O(dk−1/(k − 1)!). While a precise bound on
P<k(x) depends on the coefficients of the polynomial
P (x) (and can grow slower than O(dk−1/(k− 1)!)), The-
orem C.2 indicates that even in the worst case, the mag-
nitude of P<k(x) only grows polynomially in d. We used
this result in Sec. IV to prove that the estimation of
w<k = tr(P<k(ρ)) requires at most poly(d) measure-
ments.

2. Bound on the Magnitude of P≥k(x)

To bound P≥k(x), it will not suffice to consider the sum
of the magnitudes of the corresponding coefficients, as we
did for P<k(x). In general, this sum can grow exponen-
tially with d, which we aim to avoid. For example, for the
Chebyshev polynomials, this sum is

∑
n |td,n| = 2O(d).

Instead, we will derive our result by first considering
the constituent polynomials of the Chebyshev polynomi-
als:

Tn(x) =: Tn;<k(x) + xkTn;≥k(x). (C20)

We will also consider the polynomial constructed from
truncating the low order terms of a Chebyshev polyno-
mial:

Tn;k(x) :=
n∑

j=k

tn,jx
j (C21)

This is related to the constituent polynomial Tn;≥k(x) as

Tn;≥k(x) = Tn;k(x)/xk. (C22)

Because the Chebyshev polynomials have fixed parity, it
is only relevant to consider Tn;k for n and k of the same
parity (i.e., both either even or odd). Ref. [89] studied
these truncated Chebyshev polynomials and showed they
have definite sign:

Theorem C.3 (Main Result of Ref. [89]). The trun-
cated Chebyshev polynomials Tn;k(x) have definite sign
over x ∈ [0, 1]:

(−1)lTn;n−2l(x) ≥ 0 for x ∈ [0, 1], (C23)

for all l = 0, 1, ..., ⌊n
2 ⌋ − 1.

This implies that the sign of Tn;n−2l(x) over x ∈ [0, 1] is
equal to the sign of the coefficient tn,n−2l. In the region
x ∈ [−1, 0], the sign of is determined by the parity of
Tn;n−2l(x), or equivalently the parity of n. We can use
this result to prove the following bound on Tn;≥k(x).

Corollary C.3.1 (Maximum of Tn;≥k(x)). For n and k
of the same parity (i.e., both even or odd), the maximum
magnitude of the constituent polynomial Tn;≥k(x) over
x ∈ [−1, 1] occurs at x = 0 and takes the value:

max
x∈[−1,1]

|Tn;≥k(x)| = |Tn;≥k(0)| = |tn,k| = O

(
nk

k!

)
.

(C24)

Proof. The proof will proceed by induction on increas-
ing n. First, note that for n and k of the same parity,
the partial sum polynomial Tn;≥k(x) consists of only even
powers, and hence is an even function. According to The-
orem C.3 and Eq. (C22), this function is of constant sign

over −1 ≤ x ≤ 1, and this sign is sign(tn,k) = (−1)
n−k

2 .
Moving to the proof by induction, we will make the

inductive hypothesis that the maximum magnitudes of
the constituent polynomials are achieved at x = 0:

∀n′ ≤ n, |Tn′;≥k(0)| ≥ |Tn′;≥k(x)|, (C25)

for all k = 0, 2, ..., n′ if n′ is even, or k = 1, 3, ..., n′ if n′

is odd.
Let us show that the base cases n′ = 0 and n′ = 1

are satisfied. For n′ = 0, we have |T0;≥0(x)| = 1 ≤
|T0;≥0| = 1 is satisfied trivially. For n′ = 1, we similarly
have |T1;≥1(x)| = |t1,1| ≤ |T1;≥0(0)| = |t1,1|. It is then
straightforward to consider larger values of n′, such as
n′ = 2 in which case we have

|T2;≥0(x)| ≤ 1 = |T2;≥0(0)|, and
|T2;≥2(x)| = |t2,2| ≤ |T2;≥2(0)| = |t2,2|.

(C26)

at k = 0 and k = 2, respectively.
Then, supposing that the inductive hypothesis is true

up to n′ = n, we can show that it is also true for n′ =
n+1. To prove this, note that the Chebyshev polynomials
obey the recursion relation

Tn+1(x) = 2xTn(x)− Tn−1(x). (C27)

This implies that, for k of the same parity as n+ 1, the
constituent polynomials obey

Tn+1;≥k(x) = 2Tn;≥k−1(x)− Tn−1;≥k(x) (C28)

for k ≤ n − 1 (which ensures that the polynomial
Tn−1;≥k(x) exists). As per Theorem C.3 and Eq. (C22),
Tn;≥k−1(x) and Tn−1;≥k(x) have constant and opposite
sign over −1 ≤ x ≤ 1. This implies that

|Tn+1;≥k(x)| ≤ 2|Tn;≥k−1(x)|+ |Tn−1;≥k(x)|
≤ 2|Tn;≥k−1(0)|+ |Tn−1;≥k(0)|
= |2Tn;≥k−1(0)− Tn−1;≥k(0)|
= |Tn+1;≥k(0)|,

(C29)

where this first inequality is an application of the tri-
angle inequality, the second inequality is the inductive
hypothesis, and the last equalities follow from the con-
stant sign of the constituent polynomials. This holds true
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for k = 0, ..., n − 1 as per Eq. (C28). We can prove the
remaining cases k = n and k = n + 1 as follows. For
k = n, the recurrence relation of Eq. (C27) corresponds
to

Tn+1;≥n(x) = 2Tn;≥n−1(x), (C30)

such that

|Tn+1;≥n(x)| = 2|Tn;≥n−1(x)|
≤ 2|Tn;n−1(0)| = |Tn+1;≥n(0)|.

(C31)

For k = n + 1, the hypothesized inequality is trivially
satisfied because the constituent polynomial is a con-
stant: |Tn+1;≥n+1(0)| = |tn+1,n+1| ≥ |Tn+1;≥n+1(0)| =
|tn+1,n+1|.
Therefore, by induction on increasing n, this completes

the proof that the maximum of the constituent polyno-
mial Tn;≥k(x) occurs at x = 0. Moreover, the value at

x = 0 is |Tn;≥k(0)| = |tn,k| = O
(
nk

k!

)
.

We can use Corollary C.3.1 in conjunction with the
Chebyshev decomposition of a polynomial to prove the
following bound on an arbitrary constituent polynomial:

Theorem C.4 (Bound on constituent polynomial
P≥k(x)). For a polynomial P (x) that is bounded as
∥P∥[−1,1] ≤ 1, its partial sum polynomial is necessarily
bounded as

∥P≥k∥[−1,1] ≤ O

(
dk

k!

√
d

k

)
= O

(
poly(d)

)
. (C32)

Proof. To prove this result, first decompose P (x) into the
basis of Chebyshev polynomials:

P (x) =

d∑
n=0

cnTn(x) (C33)

where cn are the Chebyshev coefficients of P (x). The
Chebyshev polynomials obey the orthogonality relation
2−δn,0

π

∫ 1

−1
Tn(x)Tm(x)√

1−x2
dx = δnm, such that the coefficients

cn are given by

cn =
2− δn,0

π

∫ 1

−1

dx
P (x)Tn(x)√

1− x2
. (C34)

In this basis, the constituent polynomial can be expressed
as

P≥k(x) =

d∑
n=k

cnTn;≥k(x). (C35)

Next, we can employ the Cauchy-Schwarz inequality
to show that

|P 2,k(x)| =
∣∣∣ d∑
n=k

cnTn;≥k(x)
∣∣∣

≤

√√√√ d∑
n=k

|cn|2 ×

√√√√ d∑
n=k

∣∣Tn;≥k(x)
∣∣2 (C36)

Applying Parseval’s theorem with the inner product of
the Chebyshev polynomials, the 2-norm of cn is upper
bounded as

2

π

∫ 1

−1

dx
|P (x)|2√
1− x2

=
|c0|2

2
+

d∑
n=1

|cn|2

≤ 2

π

∫ 1

−1

dx
1√

1− x2
= 1,

(C37)

and therefore
∑d

n=k |cn|2 ≤ 2 = O(1). On the other
hand, the 2-norm of the Chebyshev polynomials can be
upper bounded by invoking Corollary C.3.1:

max
x∈[−1,1]

d∑
n=k

∣∣Tn;≥k(x)
∣∣2 ≤

d∑
n=k

|tn,k|2 ≤
d∑

n=k

O

(
n2k

(k!)2

)

= O

(
1

(k!)2
· d

2k+1

2k + 1

)
= O

((dk
k!

)2 d
k

)
,

(C38)

where we have used that
∑d

n=0 n
2k = d2k+1

2k+1 + O(d2k).

Inputting these upper bound into Eq. (C36), we obtain

|P≥k(x)| ≤ O

(
dk

k!

√
d

k

)
, (C39)

for x ∈ [−1, 1]. This completes the proof of the stated
result.
As an aside, we suspect this bound could be sharp-

ened to ∥P≥k∥[−1,1] ≤ O
(
dk

k!

)
, which is saturated by the

Chebyshev polynomials.

Appendix D: Augmenting Trace Estimation with
Importance Sampling

Importance sampling can be utilized to expand the
class of functions whose traces can be estimated. To
demonstrate this for functions of a density matrix, sup-
pose that we have the ability to estimate the trace of a
set of basis functions {Bj(ρ)}dj=1, by using QSP or other

techniques. For example, one could have Bj(ρ) = ρj

be monomials, or even Bj(ρ) = Tj(ρ) be the Chebyshev
polynomials. In practice, the trace of a basis function is
approximated by repeatedly measuring an estimator B̂j ,
whose expectation value is the desired trace:

E[B̂j ] = tr(Bj(ρ)) (D1)

For example, in the QSP test (Sec. II C), the estimator

is B̂ = m ∈ {0, 1}, where m is the measurement of the
block-encoding qubit.
Given this ability, one can expand the class of functions

whose traces can be estimated by incorporating impor-
tance sampling. Consider a function f(ρ) expanded in
the basis {Bj(ρ)}dj=1 as

f(ρ) =

d∑
j=1

cjBj(ρ), (D2)
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with complex coefficients cj . In order to estimate the
trace tr(f(ρ)), first define a probability distribution
p(j) = |cj |/∥c∥1, where ∥c∥1 =

∑
j |cj | is the 1-norm of

the coefficients. Then, by sampling an integer j ∼ p(j)

and evaluating the corresponding estimator B̂j , one can
construct the following quantity whose expectation value
yields the desired trace:

E
j∼p

[
cj
|cj |

B̂j

]
=

d∑
j=1

pj
cj
|cj |

tr(Bj(ρ)) =
tr(f(ρ))

∥c∥1
. (D3)

Due to the rescaling by ∥c∥1, estimating tr(f(ρ)) to ad-
ditive error ϵ requires O

(
∥c∥21/ϵ2

)
measurements.

Ref. [47] uses this importance sampling procedure to
estimate a large class of traces and expectation values,
provided the ability to generate Chebyshev polynomials
Bj(ρ) = Tj(ρ) with QSP. A similar sampling procedure
was also used in Ref. [22] to estimate the trace of func-
tions of a density matrix, given only the ability to esti-
mate the trace of the monomials Bj(ρ) = ρj . In both ref-
erences, because the measurement cost depends quadrat-
ically on the 1-norm of the coefficients, the authors note
that this method is best suited for well-behaved functions
whose 1-norm is not prohibitively large (i.e., scales only
polynomially in d rather than exponentially).
In our work, we use importance sampling to extend

parallel QSP from the limited scope of Theorem III.2 to
a larger class of property estimation problems accord-
ing to Theorem IV.2. We achieve this by decomposing
a trace tr(P (ρ)) into a linear combination of terms that
are each amenable to parallel QSP, and applying impor-
tance sampling to this sum. We discuss the proof of this
theorem in the following section.

Appendix E: Proofs for Parallel QSP for Property
Estimation

Here we prove Theorem IV.2, which provides a general
scheme for estimating a property w = tr(P (ρ)) with par-
allel QSP. As we mentioned in the main text, we achieve
this by decomposing P (x) into a linear combination of
polynomials that are each amenable to parallel QSP. We
can then apply importance sampling to this linear com-
bination to extract w.

The basis that we choose to decompose into is the basis
of Chebyshev polynomials. In this basis, we can present
and prove the theorem:

Theorem E.1 (Parallel QSP for Property Estimation:
Definite Parity). Let P (x) be a real polynomial of degree
d and definite parity, that is bounded as ∥P∥[−1,1] ≤ 1.
By invoking parallel QSP across k threads, where k has
the same parity as d, we can estimate

w = tr(P (ρ)) (E1)

with a circuit of width O(k) and query depth at most
⌊d−k

2k ⌋+k−1 = O(d/k+k). The number of measurements

required to resolve w to additive error ϵ is

O

(
∥P<k∥2[−1,1]

ϵ2
+

∥P<k∥2[−1,1]d
4
(
1 +

√
2
)4k

k2ϵ2

)

= O

(
∥P<k∥2[−1,1] + ∥P≥k∥2[−1,1]d

42O(k)

ϵ2

)
.

(E2)

Proof. Suppose P (x) is of definite parity, and that k
has the same parity. Then, by decomposing P (x) =
P<k(x)+x

kP≥k(x), P<k(x) has the same parity as P (x),
whereas P≥k(x) is necessarily even. As in the proof of
Theorem IV.1, we seek to estimate w<k and w≥k to er-
ror ϵ/2 each, such that their sum approximates w to error
ϵ.
First, we can estimate w<k with standard QSP. Be-

cause P<k(x) is real and of definite parity, the requisite
query depth is k − 1 and the requisite number of mea-

surements is O
(
∥P<k∥2[−1,1]/ϵ

2
)
.

Next, because P≥k(x) is even, we can expand it in the
basis of even Chebyshev polynomials:

P≥k(x) =

d−k
2∑

j=0

c2jT2j(x)

=

⌊ d−k
2k ⌋∑

a=0

k−1∑
b=0

ca·2k+2bTa·2k+2b(x).

(E3)

where we have judiciously recast this as a sum over
Chebyshev polynomials with orders expressed as multi-
ples of 2k, i.e. order 2j = a · 2k + b for a, b ≥ 0. Go-
ing forward, our approach will be to use properties of
the Chebsyhev polynomials to recast P≥k(x) as a linear
combination of polynomials that are each amenable to
parallel QSP. Then, one can estimate the corresponding
trace of the terms in this linear combination to furnish
an approximation to w≥k.
In more detail, we will use the following properties of

the Chebyshev polynomials [85]:

Tmn(x) = Tm(Tn(x))

Tm+n(x) = 2Tm(x)Tn(x)− T|m−n|(x).
(E4)

These properties enable, for instance, a Chebyshev poly-
nomial of degree 4n to be recast as

T4n(x) = T4(Tn(x)) = 8Tn(x)
4 − 8Tn(x)

2 + 1. (E5)

The polynomials comprising this linear combination
(Tn(x)

4, Tn(x)
2, and 1) are all positive definite and fac-

torize trivially as products of Chebyshev polynomials of
degree at most n. Thus, each term in this expression is
amenable to parallel QSP, and the degree is reduced by a
factor of 4. This is the strategy we will use going forward,
but with the degree reduced by a factor of 2k instead of
4.
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Applying this strategy to Eq. (E3), we begin by by
writing

Ta·2k+2b(x) = 2Ta·2k(x)T2b(x)− Ta·2k−2b(x) (E6)

for b > 0 and a · 2k − 2b ≥ 0. Inserting this expression
into Eq. (E3), each term −Ta·2k−2b(x) can be re-included
into the sum by modifying the corresponding coefficient
ca·2k−2b. Starting with the highest degree a = ⌊(d −
k)/2k⌋, this allows us to write

k−1∑
b=1

ca·2k+2bTa·2k+2b(x) =

k−1∑
b=1

ca·2k+2b

(
2Ta·2k(x)T2b(x)− T(a−1)·2k+2(k−b)(x)

)
.

(E7)
By re-including these terms into the sum of Eq. (E3),
this effectively changes the coefficients to (for b > 0)

ca·2k+2b 7→ 2cak+b

c(a−1)·2k+2(k−b) 7→ c(a−1)·2k+2(k−b) − ca·2k+2b.
(E8)

We now decrement a, and recurse this procedure, up-
dating the coefficients appropriately. Note that the
second mapping in Eq. (E8) is equivalent to cak+b 7→
cak+b − c(a+1)k+(k−b), which becomes the recursion

ca·2k+2b 7→ ca·2k+2b − c(a+1)·2k+2(k−b)

+c(a+2)·2k+2b − c(a+3)·2k+2(k−b)....
(E9)

Unfolding this recursion for each term in Eq. (E3), we
find that the new coefficients are

c̃a·2k+2b =


ca·2k b = 0

c2b a = 0

2
∑⌊(d−k)/2k⌋−a

j=0 (−1)jc(a+j)·2k+2αj
a, b ≥ 1,

(E10)
where

αj =

{
b j even

k − b j odd,
(E11)

such that we may rewrite P≥k(x) as

P≥k(x) =

⌊ d−k
2k ⌋∑

a=0

k−1∑
b=0

c̃a·2k+2bTa·2k(x)T2b(x). (E12)

Because |c2j | ≤ ∥P≥k∥[−1,1] as per Eq. (C10), the mag-
nitude of these coefficients is

|c̃a·2k+2b| ≤ 2∥P≥k∥[−1,1]

(⌊d− k

2k

⌋
− a
)
. (E13)

Next, let us denote the Chebyshev polynomials of even
degree as

T2n(x) =

n∑
j=0

t2n,2jx
2j . (E14)

Accordingly, we can express the product Ta·2k(x)T2b(x)
in Eq. (E12) as

Ta·2k(x)T2b(x) = T2k(Ta(x))T2(Tb(x))

=

k∑
j=0

1∑
l=0

t2k,2jt2,2lTa(x)
2jTb(x)

2l.

(E15)
such that

P≥k(x)

=

⌊ d−k
2k ⌋∑

a=0

k−1∑
b=0

k∑
j=0

1∑
l=0

c̃a·2k+2bt2k,2jt2,2lTa(x)
2jTb(x)

2l

=:

⌊ d−k
2k ⌋∑

a=0

k−1∑
b=0

k∑
j=0

1∑
l=0

C
(k)
abjlTa(x)

2jTb(x)
2l,

(E16)

where we have defined the coefficients C
(k)
abjl =

c̃a·2k+2bt2k,2jt2,2l.
This allows us to write w≥k as

w≥k = tr
(
ρkP≥k(ρ)

)
=:

⌊ d−k
2k ⌋∑

a=0

k−1∑
b=0

k∑
j=0

1∑
l=0

C
(k)
abjl tr

(
ρk
∣∣Ta(ρ)jTb(ρ)l∣∣2).

(E17)
This is now re-expressed as a linear combination of terms
that are each amenable to parallel QSP. That is, the

trace tr
(
ρk
∣∣Ta(ρ)jTb(ρ)l∣∣2) obeys the conditions of The-

orem III.2: the polynomial R(x) =
(
Ta(x)

jTb(x)
l
)2

is
real and non-negative, and trivially factorizes into k fac-
tor polynomials as

R(x) =

k∏
s=1

|Rs(x)|2 (E18)

where

Rs(x) =


Ta(x)Tb(x) s = 1, for j ≥ 1, l = 1,

Tb(x) s = 1, for j = 0, l = 1,

Ta(x) s ≥ 1, j > l,

1 s ≥ j, l.

(E19)

These factor polynomials are all real-valued, of definite
parity, and have degree at most a + b ≤ ⌊d−k

2k ⌋ + k −
1. Therefore, they can each be directly implemented
through QSP, with query depth at most ⌊d−k

2k ⌋+ k− 1 =
O(d/k + k), and achieve a factorization constant K = 1.
Using this strategy, we can estimate w≥k by estimat-

ing the terms in the linear combination of Eq. (E17)
with parallel QSP. A particularly efficient way to do
this is to use importance sampling according to Ap-
pendix D. That is, define a probability distribution

p(a, b, j, l) = |C(k)
a,b,j,l|/∥C(k)∥1. Then, by sampling
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a, b, j, l ∼ p(a, b, j, l) and evaluating the corresponding es-

timator of tr
(
ρk
∣∣Ta(ρ)jTb(ρ)l∣∣2) (i.e. the measurement

of the parallel QSP circuit associated with this polyno-
mial), we can construct a quantity whose expectation
value converges to w≥k. The associated cost of estimat-

ing w≥k to additive error ϵ is O(∥C(k)∥21/ϵ2).

In order to bound thus cost, we can upper bound the
1-norm ∥C(k)∥1 by invoking the identity

n∑
j=0

|t2n,2j | =
1

2
(1+

√
2)2n+

1

2
(1−

√
2)2n = O((1+

√
2)2n).

(E20)
This follows from the fact that t2n,2j =
(−1)j(−1)n|t2n,2j | (see Eq. (C15)), such that the
1-norm of the Chebsyhev polynomial coefficients can be
expressed as

(−1)nTn(i) = (−1)n
n∑

j=0

t2n,2j(i)
2j =

n∑
j=0

|t2n,2j |. (E21)

Using Eq. (C7), this evaluates to (−1)nTn(i) = 1
2 (1 +√

2)2n + 1
2 (1 −

√
2)2n. Therefore, using this identity, we

can upper bound ∥C(k)∥1 as

∥C(k)∥1 =

⌊ d−k
2k ⌋∑

a=0

k−1∑
b=0

k∑
j=0

1∑
l=0

|c̃a·2k+2bt2k,2jt2,2l|

=

⌊ d−k
2k ⌋∑

a=0

k−1∑
b=0

|c̃a·2k+2b|
k∑

j=0

|t2k,2j | ·
1∑

l=0

|t2,2l|

= ∥c̃∥1 ·O
(
(1 +

√
2)2k

)
.

(E22)
Using Eq. (E13), we can upper bound as ∥c̃∥1

∥c̃∥1 =

⌊ d−k
2k ⌋∑

a=0

k−1∑
b=0

|c̃a·2k+2b|

≤
⌊ d−k

2k ⌋∑
a=0

k−1∑
b=0

2∥P≥k∥[−1,1]

(⌊d− k

2k

⌋
− a
)

= 2k∥P≥k∥[−1,1]

⌊ d−k
2k ⌋∑

a=0

(⌊d− k

2k

⌋
− a
)

= O
(
∥P≥k∥[−1,1]

d2

k

)
.

(E23)

And therefore we obtain a measurement cost

O
(∥C(k)∥21

ϵ2

)
= O

(
∥P≥k∥2[−1,1]d

4
(
1 +

√
2
)4k

k2ϵ2

)

= O

(
∥P≥k∥2[−1,1]d

42O(k)

ϵ2

)
.

(E24)

Lastly, we suspect that this bound could be tightened
by improving the bound of Eq. (E13), which is rather
loose.
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