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ABSTRACT: We present an ab initio auxiliary field quantum Monte Carlo
method for studying the electronic structure of molecules, solids, and model
Hamiltonians at finite temperature. The algorithm marries the ab initio
phaseless auxiliary field quantum Monte Carlo algorithm known to produce
high accuracy ground state energies of molecules and solids with its finite
temperature variant, long used by condensed matter physicists for studying
model Hamiltonian phase diagrams, to yield a phaseless, ab initio finite
temperature method. We demonstrate that the method produces internal
energies within chemical accuracy of exact diagonalization results across a
wide range of temperatures for H2O (STO-3G), C2 (STO-6G), the one-
dimensional hydrogen chain (STO-6G), and the multiorbital Hubbard
model. Our method effectively controls the phase problem through
importance sampling, of ten even without invoking the phaseless approximation,
down to temperatures at which the systems studied approach their ground states and may therefore be viewed as exact over
wide temperature ranges. This technique embodies a versatile tool for studying the finite temperature phase diagrams of a
plethora of systems whose properties cannot be captured by a Hubbard U term alone. Our results moreover illustrate that the
severity of the phase problem for model Hamiltonians far exceeds that for many molecules at all of the temperatures studied.

1. INTRODUCTION

It goes without saying that most real world phenomena occur
at finite temperatures. Many of these phenomena, including
most chemical reactions, transpire at such sufficiently low
temperatures that it may comfortably be assumed that the
involved species’ electrons remain in their ground, or at most,
first few excited states. Nevertheless, the thermal distribution
of electrons assumes a critical role in shaping solid phase
diagrams, including the phase diagrams of many super-
conductors,1 magnetic materials,2 and trapped ultracold
atoms and molecules.3,4 Thermal electrons moreover deter-
mine much of the behavior of matter under extreme
conditions, such as plasmas in the warm dense matter regime
often realized in inertial confinement experiments,5,6 planetary
and stellar interiors,7 and materials undergoing laser
irradiation.8 In order to fully understand this wealth of
phenomena, as well as to gauge precisely when typical ground
state assumptions erode, electronic structure methods capable
of not only properly accounting for temperature but also for
strong electron correlation must be developed.
The last several decades have been marked by the

emergence of a wealth of techniques adept at handling strong
correlation in the ground state, including coupled cluster
theory,9 flavors of density functional theory,10,11 and stochastic
methods.12,13 The development of finite temperature general-
izations of these methods, and in particular generalizations
capable of treating ab initio Hamiltonians, has occurred at a far
more gradual pace. Finite temperature mean field theories
(MFT)14 and exact diagonalization (ED) techniques that
account for a system’s full spectrum of eigenvalues15 have

existed since the early days of quantum mechanics. Never-
theless, just as in the ground state situation, mean field theories
are only reliable in the limit of weak effective electron−
electron interactions and ED scales exponentially with the
system size, limiting its applicability to only the smallest of
quantum systems. In recent years, attempts to generalize
various ground state post Hartree−Fock methods, such as
many-body perturbation16,17 and coupled-cluster18 theories, to
finite temperature have been made, but this remains an active
and growing area of research.19−21 Finite temperature
generalizations of density functional theory are becoming
increasingly popular in condensed matter physics.22−27 Never-
theless, they necessitate the development and proper
benchmarking of thermal exchange correlation function-
als.24,28,29 Perhaps the most resoundingly successful finite
temperature algorithms have arisen from the long-standing
effort to map the phase diagrams of correlated lattice models,
such as the Hubbard model. Green’s function methods,
including dynamical mean field theory (DMFT),30−32 the
dynamical cluster approximation (DCA),33,34 and most
recently, self-energy embedding theory (SEET),35−37 have
driven much of our current understanding of strongly
correlated material phase diagrams. These methods, however,
rely upon being able to solve an impurity problem sufficiently
large that it can emulate the correlations within the much
larger system. In many cases, correlation lengths exceed the
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current size limits of common finite temperature impurity
solvers,38 reducing their overall applicability and reliability.
Because they are naturally capable of sampling the

abundance of states populated at finite temperature and can
both be used as highly accurate impurity solvers as well as
stand-alone techniques, quantum Monte Carlo (QMC)
methods that make use of random sampling offer a path
forward. Finite temperature Monte Carlo techniques, such as
Path Integral Monte Carlo (PIMC)39 and worldline Monte
Carlo,40 have been resoundingly successful at mapping out the
phase diagrams of bosons such as 4He because bosons lack a
sign problem, the exponential decrease of signal-to-noise
typically observed in QMC simulations of fermions that often
precludes these simulations from making meaningful pre-
dictions. A generalization of real-space PIMC to fermions, a
restricted path integral Monte Carlo method,41,42 uses
constraints based upon a trial density matrix to curb the sign
problem but has been found to exhibit nonergodic
behavior.43,44 A permutation blocking PIMC algorithm that
samples configuration space rather than real space has been
demonstrated to circumvent these issues in plasmas.45,46 A
related finite temperature variational Monte Carlo technique,
VAFT, has recently been proposed but also has not yet been
generalized to ab initio Hamiltonians.47,48 Some of the
shortcomings of real space techniques have been overcome
by recent continuous-time techniques, which now routinely
provide high accuracy solutions to lattice-based impurity
problems,49 but the applicability of these techniques is often
limited because of the severity of the sign problem for many
Hamiltonians within this framework. State-of-the-art quantum
Monte Carlo methods have therefore proven themselves fully
capable of sampling large finite temperature state spaces but
have yet to fully demonstrate their ability to treat ab initio
Hamiltonians.
In this paper, we develop a new generalization of Auxiliary

Field Quantum Monte Carlo (AFQMC)50 method to finite
temperature ab initio systems and benchmark its performance
against a variety of chemical and model Hamiltonians that
involve a range of interaction types and magnitudes [The
source code can be obtained from the Brown Digital
Repository https://doi.org/10.7301/Z0VX0F1Z upon re-
quest.] Our work is motivated by the remarkable ability of
the ground state phaseless AFQMC method to negotiate the
sign/phase problem for an increasingly large range of
applications with high accuracy at a relatively low computa-
tional cost.51,52 [In the rest of this paper, we focus on the
phaseless AFQMC method and the performance of its
phaseless approximation because of the continuous Hub-
bard−Stratonovich transformation we employ to decouple ab
initio Hamiltonians. Nevertheless, the majority of past finite
temperature auxiliary field efforts, as well as some of our
concluding examples, focus upon Hamiltonians that can be
decoupled via the discrete Hubbard−Stratonovich trans-
formation, which can give rise to a sign problem. For the
sake of brevity, we view the sign problem as a specific form of
the phase problem, even though its precise origin and
approaches for constraining it differ.] In parallel, the
determinant quantum Monte Carlo (DQMC) method has
been employed for decades to illuminate finite temperature
lattice physics.53 Applications of DQMC have overwhelmingly
been limited to sign-free Hamiltonians out of fear of the
growth of the sign problem54 and the inaccuracies that sign-
constraining approximations, such as that employed in more

recently developed finite temperature AFQMC (FT-AFQMC)
algorithms for the Hubbard model,55 may introduce. Here, we
illustrate that this fear is not entirely warranted: the phase
problem is not as severe as may have previously been
presumed in DQMC, particularly for many ab initio
Hamiltonians, even upon cooling to the ground state. For
benchmark systems ranging from water to C2 to hydrogen
chains, we find that the phase problem is so manageable that
constraints are often not even required to achieve answers with
milli-Hartree errors relative to exact results at the usual QMC
O(N3)−O(N4) scaling (see the Supporting Information for
more details regarding the scaling of this method). This is yet
further evidence for how controllable the phase problem for ab
initio Hamiltonians is within an overcomplete basis of
nonorthogonal determinants.50 Even more importantly, this
work establishes finite temperature phaseless AFQMC as a
viable approach for studying warm dense matter and solids
heretofore beyond the reach of finite temperature quantum
chemical methods, or even, other stochastic approaches.
Our paper is organized as follows: In Section 2, we review

the auxiliary field formalism for fermions at finite temperature.
We then present and demonstrate how this formalism may be
generalized to ab initio Hamiltonians. In order to illustrate both
the performance and versatility of our approach, in Section 3,
we benchmark our method against exact diagonalization (ED)
for a plethora of first- and second-row atoms on the periodic
table, as well as H2O. We moreover present results on C2, one-
dimensional H10 chains, and the multiorbital Hubbard−
Kanamori model that contextualize the accuracy of our
method by comparing against the results of other common
alternatives. We conclude with a discussion of our findings in
Section 4 and leave additional supporting results and
derivations for the Supporting Information.

2. METHODOLOGY
2.1. The Ab Initio Hamiltonian. In the following, we aim

to model systems described by the ab initio Hamiltonian

∑ ∑

̂ = ̂ + ̂

= ̂ ̂ + + ̂ ̂ ̂ ̂† † †

H K V

T c c V c c c c

(1)

( H.c.)
1
2

(2)
mn

mn m n
mnrs

mnrs m n s r

where m, n, r, and s denote spin orbital indices, cm̂
† creates an

electron in spin orbital m, and cn̂ annihilates an electron in spin
orbital n. Tmn is the collection of all one-body integrals, and K̂
= ∑mn (Tmncm̂

† cn̂ + H.c.). Vmnrs likewise denotes the collection
of all two-body integrals and ̂ = ∑ ̂ ̂ ̂ ̂† †V V c c c cmnrs mnrs m n s r

1
2

. As is

used in the derivations below, the two-body contributions may
be re-expressed in terms of spatial orbitals and spin
components

∑

∑ ∑

̂ = ̂ ̂ ̂ ̂

= ̂ ̂ ̂ ̂
αβ

αβαβ
α β β α

† †

† †

V V c c c c

V c c c c

1
2

(3)

1
2

(4)

mnrs
mnrs m n s r

ijkl

N

ijkl i j l k

Here, i, j, k, and l denote spatial orbital indices, N denotes the
number of spatial orbitals in the chosen basis, and α and β
denote spins. Note that while Vmnrs could be expanded into
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Vijkl
αβγδ, many of these integrals are zero in chemists’ notation,

leaving only the Vijkl
αβαβ integrals behind.

2.2. Finite Temperature AFQMC. DQMC has long been
employed to delineate the phase boundaries of fermion lattice
models.56 Recently, the DQMC algorithm has been modified
into an FT-AFQMC algorithm that incorporates importance
sampling and constraints on the sign problem.55 In the
following, we review the FT-AFQMC formalism in order to
ensure that our exposition is self-contained and to highlight the
key modifications we have made to it in order to apply it to ab
initio Hamiltonians.
In FT-AFQMC, it is customary to work in the grand

canonical ensemble. [The grand canonical formalism is
certainly not required. See refs 57 and 58 for an example of
a canonical ensemble version of this approach.] The key
quantity to sample in order to compute observables is thus the
grand canonical partition function, Ξ, which may be expressed
as

Ξ ≡ β μ− ̂ − ̂Tr e( )H N( ) (5)

where μ is the chemical potential, N̂ = ∑iαciα
† ciα, and β = 1/kBT

is the inverse temperature. The exponential is discretized into
L imaginary time pieces

i

k
jjjjjj

y

{
zzzzzz∏=β μ

τ

τ μ− ̂ − ̂

△ →

−△ ̂ − ̂Tr e Tr e( ) limH N

l

L
H N( )

0

( )

(6)

with Δτ = β/L so that a Suzuki−Trotter factorization of the
one- and two-body contributions to the Hamiltonian may then
be performed on each time slice propagator

τ= + Δτ μ τ τ τ−Δ ̂ − ̂ −Δ ̂ −Δ ̂ −Δ ̂e e e e O( )H N K V K( ) /2 /2 3 (7)

Here, we let K̂ denote the collection of all one-body operators
and V̂ denote that of all two-body operators. Equation 7 may
then be substituted into eq 6 to yield

i

k
jjjjjj

y

{
zzzzzz∏Ξ = [ ]

τ

τ τ τ

Δ →

−Δ ̂ −Δ ̂ −Δ ̂Tr e e elim
l

L
K V K

0

/2 /2

(8)

As the imaginary time step Δτ → 0, the exact partition
function is recovered.
The key to simplifying this expression used by DQMC and

all of its related modern-day extensions is the Hubbard−
Stratonovich (HS) transformation. The HS transformation
enables an exponential of a two-body operator to be re-
expressed as either a sum (if the transformation is discrete) or
integral (if the transformation is continuous) of one-body
operators that are functions of so-called auxiliary fields.59 In
conventional DQMC, as is commonly applied to Hubbard
Hamiltonians that contain only density−density interactions, a
discrete version of this transformation is most often employed
because of its relative efficiency.60 Where our algorithm differs
from these implementations is in its use of a continuous HS
transformation.
2.3. Continuous Hubbard−Stratonovich Transforma-

tion for Decoupling ab Initio Hamiltonians. In order to
simplify the partition function into a form amenable to
sampling for an ab initio Hamiltonian, a continuous HS
transformation must instead be performed. This is because
general two-body operators are not amenable to discrete
transformations. The continuous HS transformation may be
written as

∫π
ϕ=τλ ϕ ϕ λ τ−Δ ̂

−∞

∞
− − Δ ̂e d e e

1
2

v v/2 /22 2

(9)

where λ denotes a constant, v̂ denotes a one-body operator,
and ϕ denotes a Gaussian-distributed auxiliary field. This
transformation implies that as long as a two-body interaction
can be rewritten as the square of one-body operators it can be
decoupled. While not inherently obvious, it can be shown that
ab initio potentials may be decoupled into such a sum of
squares of one-body operators.13 This may be done by first
reordering the potential operators so that creation and
annihilation operators are paired
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ijkl

N

ijkl i k j l
ij

N

k

N

ikkj

i j

ijkl

N

ijkl i k j l 0

(10)

in which ρ ̂ = ∑ ∑α αααα
α α
†( )V c cij

N
k
N

ikkj i j0
1
2

. Since the ρ̂0
αs are

entirely comprised of one-body operators, they can be
combined into K̂. The two-body terms may be decoupled by
recasting Vijkl

αβαβ into a Hermitian supermatrix of dimension
(2N)2 × (2N)2 with two sets of indices, V(iα,kα), (lβ,jβ). This
supermatrix may then be decomposed via exact diagonalization
(or an alternative decomposition method) into the form

∑ λ= *α α β β
γ

α α γ γ β β γV R Ri k l j

N

i k l j( , ),( , )

(2 )

( , ) ( , )

2

(11)

where λγ is the γth eigenvalue, and R(iα, kα)γ is the (iα, kα)th
element of the γth eigenvector. Because the supermatrix is
semipositive definite for ab initio Hamiltonians (see the
Supporting Information for a proof), λγ ≥ 0. This can be
reinserted into eq 10 to obtain
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− ̂

γ α
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α
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† †V R c c R c c
1
2

N

ik
i k i k

lj
l j j l

(2 )

( , ) ( , )

0

2

(12)

Let ρ̂γ ≡ ∑ikα R(iα, kα)γ cîα
† ck̂α. Then, ρ̂γ

† ≡∑jlβ R(lβ, jβ)γ* cĵβ
† cl̂β and

∑ ∑λ ρ ρ ρ̂ = { ̂ ̂ } − ̂
γ

γ γ γ
α

α†V
1
4

,
N(2 )

0

2

(13)

Manipulating this (see the Supporting Information for more
details) yields the desired quadratic expression for the two-
body operator
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∑ ∑λ ρ ρ ρ ρ ρ̂ = [ ̂ + ̂ − ̂ − ̂ ] − ̂
γ

γ γ γ γ γ
α

α† †V
1
8

( ) ( )
N(2 )

2 2
0

2

(14)

This form is now directly amenable to the continuous HS
transformation of eq 9. This yields

i
k
jjjj

y
{
zzzz ∬∏

π
ϕ ϕ=

×

λ τ ρ ρ ρ ρ

γ
γ γ

ϕ ϕ

τλ ϕ ρ ρ τλ ϕ ρ ρ

− ∑ Δ [ ̂ + ̂ − ̂ − ̂ ]

−∞

∞

− +
− +

△ ̂ + ̂ △ ̂ − ̂

γ γ γ γ γ γ

γ γ

γ γ γ γ γ γ γ γ

† †

+ −

+
†

−
†

e

d d e

e e

1
2

N

i

1/8 ( ) ( )

(2 ) 2
/2

/2 ( ) /2 ( )

N(2 )2 2 2

2

2 2

(15)

As two sets of exponentials must be decoupled, two sets of HS
fields, ϕγ− and ϕγ+, are present in the above. If ϕ⃗ ≡ {ϕγ+, ϕγ−},
where γ = 1, 2,···, (2N)2 is defined as the full set of auxiliary
fields at a given imaginary time step, then all of the one-body
operators and Gaussians may be combined to yield

∫ ϕ ϕ ϕ= ⃗ ⃗ ̂ ⃗λ τ ρ ρ ρ ρ− ∑ Δ [ ̂ + ̂ − ̂ − ̂ ]

−∞

∞
γ γ γ γ γ γ

† †
e d p B( ) ( )1/8 ( ) ( )N(2 )2 2 2

(16)

where

ϕ̂ ⃗ = τλ ϕ ρ ρ τλ ϕ ρ ρ△ ̂ + ̂ △ ̂ − ̂γ γ γ γ γ γ γ γ+
†

−
†

B e e( ) i /2 ( ) /2 ( ) (17)

and

ϕ ⃗ = ϕ ϕ− +γ γ+ −p e( ) ( )/22 2

(18)

Note that the up and down contributions to B̂(ϕ⃗) may further
be partitioned into a product of up and down one-body pieces
B̂↑(ϕ⃗)B̂↓(ϕ⃗). Equation 16 may next be substituted into eq 8 to
yield

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
∫∏ ϕ ϕ ϕ ϕΞ ≈ ⃗ ⃗ ̂ ⃗ ̂ ⃗

−∞

∞

↑ ↓Tr d p B B( ) ( ) ( )
l

L

l l l l
(19)

Taking the trace over fermion operators61 produces the final
expression for the partition function

∫ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

Ξ ≈ ⃗ ⃗ [ + ⃗ ⃗ ⃗ ]

× [ + ⃗ ⃗ ⃗ ]
−∞

∞

↑ ↑ ↑

↓ ↓ ↓

d p I B B B

I B B B

( )det ( )... ( ) ( )

det ( )... ( ) ( )

l l L

L

2 1

2 1 (20)

2.4. Monte Carlo Sampling. This resulting grand
canonical partition function is a highly multidimensional
integral over auxiliary field space. The most efficient way to
obtain observables such as energies and correlation functions
from the partition function is thus to employ Monte Carlo
sampling. While it is most common in conventional DQMC to
sample all fields at once, we follow a more recent FT-AFQMC
algorithm55 and sample the fields in a step by step and orbital
by orbital fashion. This affords us the option of applying a
constraint, such as the phaseless constraint described below, at
each interval. In particular, each walker (e.g., random sample)
in the simulations is initialized to have a weight of 1 and a trial
density matrix, constructed from L short-time propagators, B̂T,
such that the initial determinants may be written as Det[I +
BT...BTBT]. Note that, throughout this work, we use a mean
field trial density matrix. At each time slice and orbital, a new
auxiliary field is sampled, and the corresponding trial density
matrix is replaced with an updated one-body operator. Let ϕik
denote all of the fields sampled at time slice k for orbital i, and
Mik

α denote the resulting determinant

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

i
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jjjjjj
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{
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ÑÑÑÑÑÑÑÑÑÑÑ
∏ ϕ ϕ ϕ ϕ= + ⃗ ⃗α

α α α α
=

−

M I B B B Bdet ( ... )... ( ) ( )ik
l

L k
T

ik k
1

1 2 1

(21)

where α denotes spin, as before. As each field is sampled, the
walker weight is multiplied by a factor, W(ϕik), the ratio of the
newly updated determinants to the previous determinants

ϕ =
↑ ↓

−
↑

−
↓W

M M
M M

( )ik
ik ik

i k i k( 1) ( 1) (22)

Once all fields are sampled, each walker’s observables may be
computed based upon its final determinants. A weighted
average may then be obtained over all walker determinants.
This process, starting from the trial density matrices, may then
be repeated until observables of interest are converged.

2.5. Background Subtraction. As is clear from eq 9, the
positive eigenvalues obtained from a continuous HS trans-
formation of a fully ab initio Hamiltonian result in complex
one-body propagators. This produces walkers with complex
weights that span the complex plane. Complex weights may
cancel each other when averaged, resulting in noise that is large
and even uncontrollable. These are the symptoms of the so-
called phase problem (a generalization of the sign problem for
real-valued Monte Carlo algorithms to the complex plane).
While the phase problem is insurmountable, it may be
mitigated through background subtraction and importance
sampling.13,62

In background subtraction, the magnitude of the imaginary
part of the propagators is substantially reduced by subtracting a
background estimate of the true densities. In particular,
subtracting ⟨ρ̂γ + ρ̂γ

†⟩MF and ⟨ρ̂γ − ρ̂γ
†⟩MF from ρ̂γ + ρ̂γ

† and ρ̂γ
− ρ̂γ

† in eq 14 leads to a new expression for the two-body term

∑ λ ρ ρ ρ ρ

ρ ρ ρ ρ

̂ = {[ ̂ + ̂ − ⟨ ̂ + ̂ ⟩ ]

− [ ̂ − ̂ − ⟨ ̂ − ̂ ⟩ ] }

γ
γ γ γ γ γ

γ γ γ γ

† †

† †

H
1
8

( )

( )

N

MF

MF

2

(2 )
2

2

2

(23)

where the ⟨·⟩MF expectation values are taken with respect to
the mean field trial density matrices.
As detailed in the Supporting Information, recasting Ĥ2 in

this form engenders new one-body terms that may be
combined with the first term in eq 1. The continuous HS
transform can then be applied to this new two-body term to
decouple it into one-body operators and calculate the partition
function and physical observables.
The ⟨ρ̂γ + ρ̂γ

†⟩MF and ⟨ρ̂γ − ρ̂γ
†⟩MF used in the background

subtraction can, in principle, be arbitrary. Nevertheless, the
closer the trial densities are to the exact densities, the smaller
the fluctuations in the exponential and the better the results
will be. As is demonstrated in the following section, mean field
trial densities are sufficient for suppressing most of the
fluctuations. However, our results may be systematically
improved by employing more accurate trial density matrices.

2.6. Importance Sampling and Phaseless Approx-
imation. For strongly correlated systems at low temperatures,
background subtraction may be not enough to control the
phase problem effectively. In such cases, importance sampling
may also need to be employed. In the context of AFQMC,
importance sampling is used to dynamically adjust the center
of the Gaussian distribution from which the auxiliary fields are
sampled according to the current estimate of the wave function
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so as to sample the “most important” auxiliary fields at each
interval. The constant shift introduced for importance
sampling is called the force bias.62

The force bias shifts, ϕ̅γ+ and ϕ̅γ−, may be incorporated into
the propagator given by eq 15 by subtracting them from the
Gaussian-distributed auxiliary fields at each time slice and for
each γ

ϕ ϕ ϕ ϕ̂ − ̅ − ̅
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γ γ γ γ
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Inserting background subtraction and force bias terms into eq
17 results in the final expression for the two-body exponential
used throughout this work
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In the above, W′(ϕγ+,ϕ̅γ+,ϕγ−,ϕ̅γ−) denotes an additional
weight factor which contains an amalgam of all shift-related
and background subtraction constants (see the Supporting
Information for more details), and p(ϕγ+, ϕγ−) is the same
Gaussian distribution as used in eq 18. When performing
Metropolis MC, it is the total weight, which is the product of
the weight given in eq 22 and W′, that is ultimately sampled. It
can be approximately shown that optimal importance sampling
is achieved when the shift is set equal to the expectation value
of the corresponding one-body operator, ϕ̅i ≈ − ⟨v̂i⟩. The
optimal field shift for each HS transform in eq 25 is then
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The overall expectation value is typically computed using the
density matrices calculated during a previous propagation step,
while the ⟨·⟩MF expectation values are taken with respect to the
mean field trial density matrices, as described above. As
illustrated in the following, importance sampling dramatically
reduces the statistical error bars we would otherwise observe.
Even making use of these advanced numerical techniques,

phase problems still typically emerge during simulations of
strongly correlated systems at sufficiently low temper-
atures.50,63 To control the phase problem, the phaseless
approximation may be invoked.50 Similar in spirit to the
constrained path approximation used to curb the sign problem,
the phaseless approximation introduces a constraint that
confines all walkers to the positive real axis. This is
accomplished by first calculating the total weight (from eq
22 and W′) after each propagation step for each walker, which
is typically complex, and then projecting it onto the real axis.
Moreover, as in the constrained path approximation, any
walkers remaining with negative weights after this projection
are killed, leaving only walkers with positive, real weights
behind. Because our propagators may also become complex,

applying the phaseless approximation to the weights alone does
not fully resolve the phase problem. To guarantee that our
observables are physical, we furthermore ignore their typically
small complex components during measurements.
As further described below, one of the key findings of this

work is that for many common molecules and models even at
temperatures that near the ground state we do not need to
employ the phaseless approximation to obtain meaningful
results. Consequently, the majority of the results reported
below are produced using background subtraction and
importance sampling alone.
As in previous finite temperature DQMC algorithms, we also

employ a birth/death population control scheme to control
walker weights and stabilize our product of propagators.64

2.7. Observables. In order to calculate energies, the
expectation value of the Hamiltonian must be taken. Drawing
upon Wick’s Theorem to simplify expectation values over
products of four or more fermion operators, the energy may be
expressed as
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where Dij
α denotes the density matrix of electrons with spin α in

the above. These density matrices may be obtained by noting
that they are directly related to the equal time, one electron
Green’s functions, Dij

α = δij − Gji
α, where
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The occupancies of electrons with spin α reported throughout
the paper are obtained by summing the diagonal terms of the
one-body density matrix, Dα,

∑⟨ ̂ ⟩ =α
α

=

N D
i

N

ii
1 (29)

3. RESULTS AND DISCUSSION
3.1. Molecules. As a first test of our formalism, we apply

our finite temperature ab initio AFQMC algorithm to a range
of molecular species, including first and second row atoms,
water molecules, and the carbon dimer. These species were
selected not only because of their ubiquity but also because all
but the carbon dimer are amenable to exact diagonalization in
a minimal basis and can therefore be used for thorough
benchmarking. In Table 1, we present the energies we obtain
for the beryllium atom in the MIDI basis using exact
diagonalization, our ab initio finite temperature AFQMC
algorithm, and mean field theory as a function of inverse
temperature. As discussed for completeness in the Supporting
Information, our mean field theory replaces all two-body
operators with a product of a one-body operator and a mean
field. The reported exact diagonalization results have been
produced by an in-house code and are what we use as our exact
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benchmark. All of the reported AFQMC results were obtained
using Δτ = 0.05 for β ≥ 1 (or L = 20 for β < 1) with 128
walkers averaged over 20 blocks; any exceptions are noted in
the captions. Refer to the Supporting Information for details
about the error analysis performed. As expected, mean field
energies most align with ED results at high temperatures. In
contrast, AFQMC energies are within milli-Hartrees of the
exact results throughout the temperature range studied. Similar
behavior is seen for He, Li, and H2, as presented in the
Supporting Information. We limit our comparison to ED to
these species in this basis because of the relatively small
number of orbitals involved. AFQMC can readily be applied to
larger systems, and its accuracy can be systematically improved
by increasing the number of samples taken and decreasing the
imaginary time step sizes used.
Because this algorithm is constructed in the grand canonical

ensemble, obtaining accurate energies for a given electron
number necessitates determining the correct chemical
potential to achieve that filling. In this work, we scan through
chemical potentials to arrive at our desired occupancies. This is
made possible by the emergence of a step-like profile
reminiscent of the Fermi−Dirac distribution in occupancy vs
chemical potential plots at temperatures for which kBT ≪ ΔE,
where ΔE is the energy difference between states with different
occupancies. This profile is depicted for the nitrogen atom in
the STO-6G basis in Figure 1 at two different illustrative
temperatures. At the lowest chemical potentials, all of the

valence electrons in the nitrogen atom are stripped away,
resulting in an average occupancy of two. [Although not
depicted here, if even lower chemical potentials were
employed, even the two remaining core electrons would be
stripped resulting in no occupancy whatsoever.] As the
chemical potential is increased, the occupancy is increased in
a continuous fashion at high temperatures and in an
increasingly stepwise fashion at lower temperatures. These
step-like plateaus make chemical potential searches not only
feasible but simple and highly accurate, circumventing the
immediate need for a canonical ensemble formalism.
In Figure 2, we step beyond atomic species and present the

internal energies of water and the carbon dimer as a function of
inverse temperature. Overall, AFQMC agrees very well with
the exact results across the whole temperature regime from
high to low temperatures. In contrast, mean field theory tends
to overestimate the internal energy, as it does not capture
correlated contributions. Specifically, at high temperatures,
these systems approach the classical limit and are dominated
by one-body kinetic and electron−nuclear contributions to the
Hamiltonian, which are also well captured by mean field
theory. As the temperature is lowered, the internal energy
decreases as states with lower energies are favored. At the same
time, the structure of the two-body interactions becomes
perceptible. In the low temperature limit, the system collapses
almost entirely to the ground state, and the energy approaches
its zero temperature ground state value. The mean field
energies also plateau at a value consistently larger than the
exact result. Interestingly, as is evident in Figure 2, mean field
theory makes the largest errors at intermediate temperatures.
This is because, at intermediate temperatures, the system
occupies a range of very specific excited states, a situation that
mean field theory fails to capture. At the lowest temperatures,
evidence of the phase problem begins to emerge, as manifested
by increasingly large error bars. Even so, the results presented
were obtained without the phaseless approximation. This is
particularly fascinating because Table 1 and Figure 2
demonstrate that our finite temperature results come within
milli-Hartrees of the exact ground state results. This suggests
that finite temperature internal energies, which near the
ground state energy before a pernicious phase problem crops
up, may powerfully serve as a “phase problem-light” way of
obtaining ground state energies without explicitly simulating
the ground state. These plots may also hint at the fact that, in
the ground state, averaging over blocks of simulations carried
out to a finite β before a catastrophic phase problem sets in
may yield better statistics than carrying out continuous
simulations to infinite β, as is commonly performed. It is
moreover clear from Figure 2 that C2 is far more correlated
than H2O. Previous work suggests that C2 contains a complex
quadruple bond,67 which accounts for its more correlated
behavior. Indeed, the difference between the first excited and
ground state of H2O (0.3863 hartree) is 8 times greater than
that for C2 (0.04539 hartree). Regardless, AFQMC readily
obtains highly accurate C2 internal energies given sufficient
averaging.

3.2. Ab Initio Solids. As a demonstration of the
applicability of our method to solids, we calculate the internal
energy of a one-dimensional H10 chain at different bond
lengths with open boundary conditions, as shown in Figure 3.
[Here, we constrain the geometry to have equal bond lengths
between all hydrogens.] The H10 chain in a small basis may be
viewed as the simplest representation of a solid that still retains

Table 1. Internal Energy of the Be Atom at Various Inverse
Temperatures in the MIDI Basis Set, Using ED (exact),
AFQMC, and MFTa

1/kBT ED AFQMC MFT

0.01 −10.81253 −10.812(7) −10.80377
0.1 −11.48668 −11.48(2) −11.39578
1 −13.99009 −13.991(5) −13.82935
5 −14.26004 −14.26(2) −14.17466
10 −14.39662 −14.395(2) −14.30915
20 −14.47835 −14.482(2) −14.43693
50 −14.48459 −14.485(1) −14.47476
100 −14.48460 −14.485(2) −14.47504

aAll energies are reported in Hartree.

Figure 1. Occupancy of the nitrogen atom at different chemical
potentials for T = 0.1 and T = 1.0 hartree/kB, calculated using the
STO-6G basis, averaged over 54 blocks. The occupancy is calculated
by summing up the diagonal terms of the one-body density matrix, as
in eq 29.
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non-density−density terms within its Hamiltonian.51 Beyond
its simplicity, what makes the hydrogen chain particularly
illuminating is that its degree of correlation changes as its bond
distances change. In particular, as the hydrogen chain evolves
from the equilibrium geometry in Figure 3(a) to the stretched
geometry in Figure 3(b), the overlap between adjacent
hydrogen atoms decreases resulting in a smaller band gap
and increased multireference character, which leads to a larger
mean field error in Figure 3(b) than in Figure 3(a). Even so,
FT-AFQMC is robust regardless of bond length, and by
extension, metallic vs insulating character.
3.3. Multi-Orbital Hubbard Model. Given the convinc-

ing results presented above for molecules and a model ab initio
solid, we also benchmark our algorithm on a notoriously
strongly correlated model Hamiltonian, the two-band
Hubbard−Kanamori Hamiltonian. The multiorbital Hub-
bard−Kanamori model is a multiband generalization of the
Hubbard model that includes Hund’s coupling terms pivotal to
the accurate description of many transition metal oxides, such
as the pnictides and ruthenates.68−71 Its Hamiltonian may be
expressed as

∑ ∑ ∑μ̂ = ̂ ̂ − ̂ + ̂
α
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is the local intrasite interaction for site i. cîmα
† and cîmα are the

creation and annihilation operators for an electron with spin α
at orbital m of site i. n̂imα is the density operator of an electron
with α spin at orbital m of site i. U is the on-site intraorbital
Coulomb repulsion, U′ is the on-site interorbital Coulomb
repulsion, and J is the Hund’s exchange interaction. Assuming
a spherically symmetric interaction and t2g wave functions (the
typical choice), U′ = U − 2J.72 While the U and U′ density−
density terms are readily amenable to standard DQMC, the
Hund’s exchange terms result in a substantial sign problem that
thwarts the direct application of most QMC techniques.73

Nevertheless, these same terms may be viewed as particular

Figure 2. Internal energy of the (a) H2O (STO-3G basis) and (b) C2 (STO-6G) molecules across a wide range of inverse temperatures using FT
AFQMC, ED (exact), and mean field theory. C−C and O−H bond lengths are 1.262 and 0.96 Å, respectively, and the H−O−H bond angle is
109.5°. Exact ground state energies were obtained using the full configuration interaction routine in Molpro;65,66 the full spectrum of exact excited
state energies was too expensive to compute. The inset highlights the energies observed in the low temperature regime. AFQMC results for C2 are
averaged over 100 blocks. Note that the exact FT internal energies for C2 cannot be obtained due to system size.

Figure 3. Internal energy of the one-dimensional H10 chain at its (a) equilibrium bond length and (b) an elongated bond length with the STO-6G
basis set using FT AFQMC and mean field theory. The dashed black line labels the exact energy in the ground state.52 Note that the exact FT
internal energies cannot be obtained due to their prohibitive computational cost. AFQMC results for kBT < 0.1 hartree are averaged over 80 blocks.
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instances of the full ab initio Hamiltonian and consequently
may be treated by the methods we have described above.
To demonstrate the applicability of our method to this more

challenging model, we calculate its energy on a 4 × 2
rectangular lattice with intermediate Hund’s coupling strength
(J = U/4) at half-filling. Furthermore, we assume that hopping
occurs only between adjacent sites within the same orbitals;
i.e., tij

mm′ = t⟨i,j⟩δmm′. Comparing the top and bottom panels of
Figure 4, we see that the difference between the mean field and
exact results for the two-band Hubbard Model is significantly
larger than the same difference for the one-band Hubbard
model, demonstrating that the two-band model is significantly
more correlated than the one-band model. Despite having
structurally similar two-body terms in their Hamiltonians, the
Hubbard−Kanamori model moreover manifests dramatically
stronger correlation than the molecules illustrated above. The
Hubbard−Kanamori model may therefore be viewed as a
particularly challenging “ab initio” test case for algorithmic
advances, such as improved trial density matrices, that may be
needed for the more strongly correlated model systems to
which we aspire to ultimately treat. Regardless, the
convergence of the internal energies with decreasing temper-

ature suggests that these models are within reach of our
methodology.

3.4. The Phase Problem. As demonstrated in the previous
sections, ab initio Hamiltonians generally result in a phase
problem. To gain a quantitative understanding of the severity
of the phase problem and therefore the efficacy of our method
for the range of Hamiltonians studied, we analyze the weight
distributions and average phase angles of our walkers for C2
and H2O using both the free propagation and background
subtraction versions of our algorithm, as well as for H10 at
equilibrium and stretched bond lengths using just the
background subtraction version of our algorithm. We do not
present Hubbard or Hubbard−Kanamori phase angles here
because these models do not possess a phase problem for the
fillings employed in Section 3.3; we save a discussion of
nonhalf-filling Hubbard−Kanamori results that possess a phase
problem for a subsequent paper.
As is illustrated in Figure 5(a), free propagation (dashed

lines) leads to phase angles that rapidly increase with inverse
temperature, reaching 90° even after just a few inverse Hartree.
In contrast, when background subtraction (solid lines) is
applied, the phase angle increases at a much slower pace, so

Figure 4. Internal energy of (a) the 4 × 2, one-band Hubbard model at U/t = 4 and half-filling and (b) the two-band Hubbard−Kanamori model at
U/t = 4, J/t = 1 and half-filling averaged over 56 walkers for 100 blocks using variants of FT AFQMC and mean field theory over a range of
temperatures. Exact FT internal energies were not obtained due to their exorbitant computational cost. The AFQMC results for the one-band
Hubbard model are averaged over 10 blocks, while the two-band Hubbard−Kanamori model results are averaged over 100 blocks with 56 walkers.

Figure 5. (a) Average absolute value of the phase angle at different temperatures for the various systems investigated. Dashed lines represent the
free propagation results, while solid lines denote background subtraction results. (b) Walker weight distribution of free propagation (outer circle)
and background subtraction (inner circle) samples in polar coordinates for H2O at T = 1 hartree/kB. (c) The walker weight distribution in polar
coordinates for H2O at different temperatures (outer circle for high temperature, and inner circle for lower temperature) with background
subtraction. In both (b) and (c), each empty circle represents one walker. Each circle’s polar angle denotes its walker’s complex phase, while each
circle’s shading scales with the absolute value of its walker’s weight. 1280 walkers are plotted in each case.
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slow that even at low temperatures close to ground state the
phase problem is still tractable. Interestingly, the phase
problem appears to plateau in these systems at intermediate
inverse temperatures, suggesting that most of the phase
problem stems from propagating down from a larger ensemble
of states to a small subset of excited states, not from resolving
between a handful of states and the ground state. This is
consistent with our previous observation that the largest
amount of correlation is present at the same intermediate
inverse temperatures. To better understand the effect of
background subtraction as compared to free propagation,
Figure 5(b) plots the walker weight distribution employing
both techniques for H2O at T = 1 hartree/kB. When freely
propagated, walker weights tend to distribute evenly among all
phase angle values (the outer circle), and they largely cancel
each other in Monte Carlo averages, resulting in a very severe
phase problem. Once background subtraction is applied (inner
circle), all the walker weights tend to cluster around a phase
angle of zero, with walkers with larger absolute weights
carrying smaller absolute phase angles. This greatly reduces the
cancellation in Monte Carlo averages and improves the
sampling efficiency. Lastly, Figure 5(c) demonstrates the
severity of the phase problem at different temperatures taking
H2O as an example. In the high temperature limit, nearly all
the walker weights are distributed on the real axis with similar
absolute weights, as shown by the overlapping dark black
circles on the outermost ring at 0 phase angle for T = 100
hartree/kB. As the temperature is lowered to T = 1 hartree/kB
(middle ring), the walkers develop larger phase angles and
spread over a larger portion of phase angle space. When the
temperature is decreased further to T = 0.1 hartree/kB (inner
ring), walker weights nearly uniformly populate the full
complex plane. Altogether, the fact that the phase angle is
well behaved for the disparate ab initio examples studied here
bodes well for this method.

4. CONCLUSIONS

In summary, we report an ab initio FT-AFQMC method
capable of high accuracy predictions across a wide range of
temperatures for molecules, solids, and model Hamiltonians
alike. We find that for all of the systems presented the phase
problem at finite temperature is significantly smaller than the
corresponding ground state phase problem and can therefore
be effectively controlled not only without invoking the
phaseless approximation but also only making use of easy-to-
acquire mean field trial density matrices. This suggests a path
toward exploiting finite temperature (or fixed β) simulations to
acquire ground state information. Our algorithm moreover
benefits from the low O(N3)−O(N4) scaling characteristic of
other AFQMC algorithms, which places warm dense matter,
solid state, and condensed matter applications within reach.
We look forward to ab initio FT-AFQMC explorations of these
systems in the near future.
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