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Quantum signal processing and quantum singular value transformation are powerful tools to
implement polynomial transformations of block-encoded matrices on quantum computers, and has
achieved asymptotically optimal complexity in many prominent quantum algorithms. We propose
a framework of quantum signal processing and quantum singular value transformation on U(N),
which realizes multiple polynomials simultaneously from a block-encoded input, as a generalization
of those on U(2) in the original frameworks. We also perform a comprehensive analysis on achievable
polynomials and give a recursive algorithm to construct the quantum circuit that gives the desired
polynomial transformation. As an example application, the new framework is used to construct
the quantum amplitude estimation algorithm with asymptotically optimal query complexity. Based
on this framework, we also propose a framework to realize multi-variate polynomial functions for
commutative variables.

I. INTRODUCTION

Quantum Signal Processing (QSP) is a powerful tool
for building quantum algorithms, capable of unifying
many other existing algorithms [1–3]. QSP can be con-
ceptualized as a framework of polynomial transforma-
tion of matrices, which maps a set of phase angles to
a polynomial function to approximate a wide range of
target functions. Quantum Singular Value Trandforma-
toin (QSVT) [2], another framework derived from QSP,
extends the application to polynomial singular value
transformations of matrices, which can be even non-
square. Asymptotic analyses of QSP-based quantum
algorithms indicate their potential to achieve optimal
complexity in various tasks, such as Hamiltonian sim-
ulation [1, 4, 5], linear system solving [6], ground state
preperation [7], fixed-point quantum search [8]. QSP is
also used to improve and simplify algorithms for quan-
tum amplitude estimation (QAE) [9], which is a funda-
mental task in quantum metrology [10–12] and has direct
applications in numerical integration [13], quantum to-
mography [14–18], overlap and expectation value estima-
tion in quantum simulation [19–23], Gibbs sampling [24],
variational quantum algorithms and quantum machine
learning [25–28]. Recent research in QSP theories has
focused on efficient realization of block encoding [29, 30],
classical evaluation of phase angles [31–33], and gener-
alization [34–38].

Meanwhile, the original framework of QSP has some
restrictions that limit its applicability. On the mathe-
matical side, the original framework utilizes a series of
tunable U(2) elements to realize a class of polynomial
transformations, i.e., to construct a unitary transforma-
tion that is a block encoding of the target polynomial
P (U) given input U . It is a natural question whether we
can realize more than one polynomials at the same time
if we use a sequence of tunable U(N) elements instead.
On the practical side, the idea of realizing multiple tar-
get functions lies in the core of some quantum algorithms

like the quantum phase estimation (QPE) and quantum
amplitude estimation (QAE) algorithms [39]. In addi-
tion, by expanding the toolkit in manipulating matrices
in quantum computers, QSP and QSVT on U(N) can
also helps us in more complicated taks like the multi-
variate generalization of QSP, which is much less un-
derstood than the uni-variate one, and known to have
significant difficulties brought by its exponentially large
target space and the commuting relations between differ-
ent variables [37, 38].

During the preparation of this paper, another pa-
per [34] by Lorenzo Laneve came out, which studies the
generalization of QSP over SU(N) that can prepare the
state

∑
m Pm(z) |m⟩ from |0⟩ by a similar construction,

and its application in quantum phase estimation. In com-
parison, his result [34] can be viewed as a special case of
our Theorem 3, in which a N × 1 polynomial block P
is encoded. Compared to QSP and QSVT in U(2), es-
tablishing theories in U(N) requires understanding the
quantum circuits from a different perspective and more
theoretical results from algebraic geometry.

In this paper, we establish a complete theory of QSP
and QSVT on U(N) that has multiple outputs block en-
coded in a unitary, in the sense that given any mathemat-
ically permissible set of target polynomials, one can find
a sequence of U(N) elements in the quantum circuits,
evaluated by a recursive procedure, to realize them. As
examples of application, we first show how our theory
helps to give resource bound in QAE problem and con-
struct asympotically optimal QAE algorithms, then have
a discussion on its potential application towards multi-
variate QSP. A graphical summary of the contributions
of our paper is given in FIG. 1.

The structure of this paper is organized as follows. In
Sec. II, we first review fundamental results on single block
encoding of uni-variate QSP, then define the generaliza-
tion on U(N) for two types of QSP algorithms, namely
QSP for unitary and QSVT, introduce and prove the
main theories on achievable polynomial sets. As the first
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FIG. 1: A summary of our contributions in the paper. The orange quantum gates are for tunnable parameterized
unitaries or projectors, while the blue gates are for fixed input variables.

application, in Sec. III we show that any measurement
output of a QAE circuit can be regarded as a polynomial
transformation of the amplitude on U(N), and using nu-
merical optimization on achievable polynomials we can
obtain and achieve the optimal accuracy of QAE in dif-
ferent measures. Next, we also show that U(N)-QSP can
be used to perform multi-variate quantum signal process-
ing (MQSP) with a wider range of achievable polynomials
than U(2)-QSP in Sec. IV. Finally, we make conclusions
and discuss outlooks in Sec. V.

II. THEORY OF QSP AND QSVT ON U(N)

In this section, we first briefly review the fundamental
results about QSP in Sec. IIA. Then, in Sec. II B and
Sec. II C, we first define the generalization on U(N), then
construct a quantum circuit with tunable parts that help
achieving different target functions, and finally state and
prove the achievable polynomial sets by the circuit.

A. Review of Quantum Signal Processing

To block-encode any matrix A in a quantum operation,
an ancilla system is used to construct a unitary U such
that,

U |0⟩ |ψ⟩ =
∣∣0̃〉A |ψ⟩+ · · · , or U =

(
A ∗
∗ ∗

)
, (1)

in which both |0⟩ and
∣∣0̃〉 are qubits all set to zero, and

we use different notations here to indicate that the num-
ber of qubits in them can be different, so that the block
encoding can also be well defined for non-square matrix
A.
In this paper, we focus on two algorithms in the QSP

family, namely the QSP for unitrary matrices and quan-
tum singular value transformation (QSVT) for general
matrices. In QSP-U, one use several controlled-U opera-
tions to construct a block encoding of polynomials of U
of the form P (U) =

∑
j cjU

j [33, 40]. A fundamental
result in QSP-U is as follows.

Theorem 1 (Theorem 3 and 4 in [40]) Given any
polynomial P (z) of degree L s.t. |P (z)| ≤ 1,∀|z| = 1.
Then one can block-encode P (U) using L calls to
controlled-U for any unitary matrix input U .
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(a) -QSP, unitary form (b) -QSP, projection form

(c) -QSP, unitary form (d) -QSP, projection form

FIG. 2: Comparison between QSP on U(2) and U(N), in which Πk are projection operators, and a gate connecting
a projector Π with a unitary U is for the multi-qubit controlled gate CΠ(U) := Π⊗ U + (I −Π)⊗ I.

In QSVT, however, one uses U and U† alternatively to
construct a block encoding of singular-value polynomial
transformations of A, which is defined as,

P (SV )(A) =

{∑
j P (λj) |ψj⟩⟨ψj | , if L is even,∑
j P (λj)

∣∣∣ψj

〉〈
ψ̃j

∣∣∣ , if L is odd,
(2)

where L is the number of calls to U and U† in to-

tal, and A =
∑

j λj

∣∣∣ψj

〉〈
ψ̃j

∣∣∣ for two orthogonal sets

{|ψj⟩}, {
∣∣∣ψ̃j

〉
} and λj ∈ R, and P naturally subjects to

the parity condition that P (−x) = (−1)LP (x). When
A is Hermitian, one can write A =

∑
j λj |ψj⟩⟨ψj | with

λj ∈ R, then the singular value polynomial transforma-
tion is equal to the matrix polynomial. But in general
they can be different. A milestone result in the original
framework of QSVT is as follows.

Theorem 2 (Corollary 8 and 10 in [41]) Given a
pair of polynomials P (z) satisfying,

1. deg(P ) ≤ L;

2. P has parity L mod 2;

3. ∀x ∈ [−1, 1], |P (x)| ≤ 1;

and a general matrix A block-encoded by a unitary U , one
can block-encode P (SV )(A) using L calls to U and U−1

in total.

Compared to QSP-U, it has inherit restrictions on par-
ity, since singular value transformation (SVT) by poly-
nomials without definite parity is not well-defined in
Eq. (2) and can give unexpected results. One excep-
tion is that for Hermitian input, the SVT by polynomi-
als without definite parity since the left and right sin-
gular vector spaces share the same basis and is identi-
cal to the common polynomial transformation. In this
case SVT with complex-valued polynomials is also well-
defined. To tackle with the two problems we can utilize
the linear combination of unitaries (LCU, also introduced
in Lemma 6 in this paper) [42], given additional access
to controlled U and U−1.

B. U(N)-Quantum Signal Processing

Given any unitary U and complex polynomial matrix
P (z) = {Pjk(z)}, by U(N)-QSP we hope to construct
the unitary transformation,

P00(U) P01(U) · · · ∗
P10(U) P11(U) · · · ∗

...
...

. . .
...

∗ ∗ · · · ∗

 . (3)

For this task we construct a quantum circuit in
FIG. 2(d), with {Πk} being tunable projection operators.
The U(2)-QSP was first written in the form in FIG. 2(a),
with {Rk} being tunable single-qubit unitary operators,

R(θ, ϕ, λ) =

(
ei(λ+ϕ) cos θ eiϕ sin θ
eiλ sin θ − cos θ

)
. (4)

To see the relationship between (a) and (d) in FIG. 2, we
can write the circuit (a), in which all U are controlled by
the projector |1⟩⟨1| in the first register, into an equivalent
form in (b) with controlling projectors Π1, · · · ,Πk and an
initial unitary V0 by,{

V0 = R0R1 · · ·RL,

Πk = R†
L · · ·R†

k |1⟩⟨1|Rk · · ·RL.
(5)

From (b) to (d), the number of ancilla qubits is gener-
alized from one to many, V0 can take value from U(N),
and each Πk is a projector of arbitrary subspace of the
N -dimensional Hilbert space, where N equals 2 to the
power of the number of ancilla qubits. If we write
Πk =

∑rk−1
l=0 |ψk,l⟩⟨ψk,l|, where rk ∈ {0, · · · , N} is the

rank of Πk, we can further write (d) as an equivalent
unitary form in (c) with tunable unitaries Vk and con-

trolled projectors Π′
k =

∑rk−1
l=0 |l⟩⟨l|, by{

Rk =
(∑rk−1

l=0 |l⟩⟨ψk,l|
)
R†

L · · ·R†
k+1, (k = L, · · · , 1)

R0 = V0R
†
L · · ·R†

1.
(6)

We characterize the achievable polynomials of U(N)-
QSP in FIG. 2(d) by the following lemmas and theorems.
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Lemma 1 (U(N)-QSP, forward) Using L calls to a
unitary U , the quantum circuit in FIG. 2(d) implements
the unitary operation,

P00(U) P01(U) · · · P0,N−1(U)
P10(U) P11(U) · · · P1,N−1(U)

...
...

. . .
...

PN−1,0(U) PN−1,1(U) · · · PN−1,N−1(U)

 . (7)

for a matrix of complex-valued polynomials {Pjk(z)} of
degrees no more than L, denoted as P (z).

Proof of Lemma 1. The proof is straightforward by
induction on L. For L = 0, the target unitary is V0 ⊗ I,
indicating that Pjk is simply the constant function equal
to the (j, k)-th entry of V0.
If the lemma holds for L−1, i.e., the part of the circuit

before the last controlled-U implements the unitary op-

eration P (U) =
∑L−1

l=0 P̃l⊗U l for some constant matrices

{P̃l}. Then,

CΠL(U)P (U) =

L−1∑
l=0

ΠLP̃l ⊗ U l+1 + (I −ΠL)P̃l ⊗ U l, (8)

which is of the form Eq. (7) with degree no more than L.
□

Theorem 3 (U(N)-QSP, backward) Given any uni-
tary U and complex polynomial matrix P (z) of degrees
no more than L, such that P (z) has all singular values in
[0, 1] whenever |z| ≤ 1. Then one can construct a quan-
tum circuit with L calls to controlled-U to implement a
block encoding of P (U), as defined in Eq. (3).

Before the proof of Theorem 3, we first prove its weaker
version as follows.

Theorem 4 Given any unitary U and complex polyno-
mial matrix P (z) that is unitary for all |z| ≤ 1. Then
one can tune the parameters V0,Π1, · · · ,ΠL in FIG. 2(d)
to implement the unitary transformation P (U).

Proof of Theorem 4. We use induction on L to prove
the theorem.

For L = 0, each entry of Eq. (7) is constant, so we can
simply choose V0 to be the target unitary. If the theorem
holds for L − 1, we show that when the degree is L, we
can always find a ΠL such that CΠL

(U−1)P (U) is also of
the form Eq. (7), with each entry a polynomial of degree
no more than (L− 1).

Write, P (U) =
∑L

l=0 P̃l ⊗ U l. Picking the UL term

out of the identity P (U)†P (U) = I, we have, P̃ †
0 P̃L = 0.

This shows that the column spaces of P̃0 and P̃L are
orthogonal. Let ΠL be the projector onto the column
space of P̃0. Then ΠLP̃L = (I −ΠL)P̃0 = 0. As a result,

CΠL(U
−1)P (U)

=

L∑
l=0

ΠLP̃l ⊗ U l−1 + (I −ΠL)P̃l ⊗ U l

=

L−1∑
l=0

[
ΠLP̃l+1 + (I −ΠL)P̃l

]
⊗ U l,

(9)

which is of the form Eq. (7) with degree no more than
(L − 1). By induction, we show a constructive way to
find VL, VL−1, · · · , V0. This proof also gives a classical
algorithm to find the parameters. □
Proof of Theorem 3. Since I − P (z)†P (z) is positive

semidefinite on |z| = 1, by the Polynomial Matrix Spec-
tral Factorization Theorem [43, 44], there is a polynomial
matrix Q(z) of degree no more than L such that,

I − P (z)†P (z) = Q(z)†Q(z). (10)

Next, we hope to find a block R(z) such that,(
P (z) Q(z)

R(z)

)
, (11)

is unitary on |z| = 1, i.e., R(z) has proper size to make
it a square matrix and,(

P (z)†

Q(z)†
R(z)†

)(
P (z) Q(z)

R(z)

)
=

(
P (z)†

Q(z)†

)(
P (z) Q(z)

)
+R(z)†R(z) = I,

(12)

Again, this is always possible since

I −
(
P (z)†

Q(z)†

)(
P (z) Q(z)

)
, (13)

is positive semidefinite for all |z| = 1, as(
P (z) Q(z)

)(P (z)†

Q(z)†

)
= I (14)

from Eq. (10) implies that(
P (z)†

Q(z)†

)(
P (z) Q(z)

)
(15)

is identity in some subspace. Finally,(
P (U) Q(U)

R(U)

)
, (16)

is a block encoding of P (U) and by Theorem 4, it can be
implemented as desired. □
The Theorem 3 is a generalization of the results in

[40], in which only one aniclla qubit is used, and the
corresponding P (z) contains a single entry p(z), with
prerequisites |p(z)| ≤ 1 for all |z| = 1.

C. U(N)-Quantum Singular Value Transformation

In this subsection we assume all polynomial transfor-
mations of matrices are the singular value polynomial
transformations in Eq. (2), and without ambiguity we
omit the superscript (SV ). Assume |ψ⟩ is exactly some
right singular vector |ψk⟩ of A. Define |Ψm⟩ = |0⟩ |ψk⟩,∣∣∣Ψ̃m

〉
=

∣∣0̃〉 ∣∣∣ψ̃k

〉
, and define

∣∣Ψ⊥
m

〉
,
∣∣∣Ψ̃⊥

m

〉
by

U |Ψk⟩ = λm

∣∣∣Ψ̃k

〉
+ λ̄m

∣∣∣Ψ̃⊥
k

〉
, (17)

U†
∣∣∣Ψ̃k

〉
= λm |Ψk⟩ − λ̄m

∣∣Ψ⊥
k

〉
, (18)
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FIG. 3: The U(N)-QSVT unit, in which Π = |0⟩⟨0| and Π̃ =
∣∣0̃〉〈0̃∣∣. The U and U† gates applied to the second

register alternate, and it depends on the parity of L whether the last two gates in the second register are U and Π,
or U† and Π̃.

where λ̄m :=
√
1− λ2m. Thus in the basis

(|Ψm⟩ ,
∣∣Ψ⊥

m

〉
) → (

∣∣∣Ψ̃m

〉
,
∣∣∣Ψ̃⊥

m

〉
),

U =

(
λm λ̄m

−λ̄m λm

)
. (19)

Given a general matrix A and a matrix of polynomials
P , the U(N)-QSVT is defined as the unitary transfor-
mation, ∑

j

|j⟩ |0⟩ |ϕj⟩

7→
∑
k

[
|k⟩ |0⟩

∑
j

Pkj(A) |ϕj⟩+
∣∣∣0⊥

〉
|· · ·⟩

]
.

(20)

Similar to the idea of qubitization [2], we first give the
following two lemmas that works with one singular value
λm.

Lemma 2 If L is odd, then the quantum circuit in
FIG. 3 implements the unitary transformation,

|j⟩ |Ψm⟩

7→
∑
k

|k⟩
[
Pkj(λm)

∣∣∣Ψ̃m

〉
+ λ̄mQkj(λm)

∣∣∣Ψ̃⊥
m

〉]
, (21)

for some L-polynomials {Pkj} and (L − 1)-polynomials
{Qkj} such that,∑

k

[
|Pkj(x)|2 + (1− x2)|Qkj(x)|2

]
≡ 1. (22)

Otherwise, if L is even, then in Eq. (21) the
∣∣∣Ψ̃m

〉
,
∣∣∣Ψ̃⊥

m

〉
should be replaced by |Ψm⟩ ,

∣∣Ψ⊥
m

〉
.

Proof of Lemma 2. We prove by induction on L. For
L = 0, the output state is simply

∑
k ukj |k⟩ |Ψm⟩, with

ukj being the (k, j)-th entry of V0, and these constant
functions are 0-polynomials.

Suppose the lemma holds for some even number (L−1),
i.e., the state before the final U and CΠ(VL) gates in
FIG. 3 is Eq. (21). Then after applying the two gates,
the state is,

∑
k

|k⟩

{∑
l

ukl

[
λmPlj(λm)− (1− λ2

m)Qlj(λm)
] ∣∣∣Ψ̃m

〉
λ̄m [Plk(λm) + λmQkj(λm)]

∣∣∣Ψ̃⊥
m

〉}
,

(23)

which is of the desired form in Eq. (21) with polynomials
satisfying both the degree and parity constraints.
The case when L is even is analogous. □
By the linearity of quantum circuits, the single singular

value case can be immediately generalized as follows.

Lemma 3 (U(N)-QSVT, forward) The quantum cir-
cuit in FIG. 3 implements the unitary transformation
Eq. (20) for some matrix of polynomials P .

The main theorem showing the usefulness of the quan-
tum circuit in FIG. 3, as a generalization of Theorem 2,
is as follows.

Theorem 5 (U(N)-QSVT, backward) Given a ma-
trix A blocked-encoded by U as in Eq. (1), and a poly-
nomial matrix P (x) such that I −P (x)†P (x) is positive
semidefinite for all x ∈ [−1, 1], with L calls to U and U−1

in total, one can implement a block encoding of P (A) by
the following unitary transformation,

|0⟩
∑
j

|j⟩ |0⟩ |ϕj⟩

7→ |0⟩
∑
k

|k⟩ |0⟩
∑
j

Pkj(A) |ϕj⟩+ |1⟩ |· · ·⟩ .
(24)

Lemma 4 Given a matrix A and its blocking encoding
U as in Eq. (1), a matrix of L-polynomials P (x) and a
matrix of (L−1)-polynomials Q(x) of the same size such
that,

P (x)†P (x) + (1− x2)Q(x)†Q(x) ≡ I, (25)

for all x ∈ [−1, 1], one can find V0, · · · , VL in FIG. 3 to
make it implement the transformation Eq. (21) for each
j.

Proof of Lemma 4. We prove by induction on L. The
case L = 0 is trivial, as Q(x) = 0 and P (x) is a constant
unitary matrix, and one can simply let V0 = P (x).
Suppose the lemma holds for some even (L − 1), and

now we consider the case for L. Write,

P (x) =

(L−1)/2∑
l=0

P̃2l+1x
2l+1, (26)

Q(x) =

(L−1)/2∑
l=0

Q̂2lx
2l. (27)
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Picking the x2L terms out of the constraint Eq. (25),

P̃ †
LP̃L − Q̂†

L−1Q̂L−1 = 0, (28)

so there is a unitary VL such that V †
LP̃L = Q̂L−1.

Write V †
L = {ukl}. Then,

(I ⊗ U)−1CΠ(VL)
−1·∑

k

|k⟩
[
Pkj(λm)

∣∣∣Ψ̃m

〉
+ λ̄mQkj(λm)

∣∣∣Ψ̃⊥
m

〉]
=
∑
k

|k⟩

{[∑
l

uklλmPlj(λm) + (1− λ2
m)Qkj(λm)

]
|Ψm⟩

λ̄m

[
−
∑
l

uklPlj(λm) + λmQkj(λm)

] ∣∣∣Ψ⊥
m

〉}
,

(29)

in which the coefficient polynomial of |Ψm⟩ is actually
a (L − 1)-polynomial, since its λL+1

m term coefficient∑
l ukl(P̃L)lj−(Q̂L−1)kj = 0, and similarly the coefficient

polynomial of
∣∣Ψ⊥

m

〉
is actually a (L− 2)-polynomial. So

we reduce the degree of the problem by 1.
The case when L is even is analogous. □
Proof of Theorem 5. All we need to show is that one

can find a matrix of L-polynomials P1(x) and a matrix
of (L− 1)-polynomials Q1(x) such that,

(
P (x)† P1(x)

†)(P (x)
P1(x)

)
+ (1− x2)Q1(x)

†Q1(x) = I, (30)

such that by rearranging order, one can label the flag
qubit corresponding to the P (x) block to zero while
P1(x) and Q1(x) to one, to obtain the desired block en-
coding of P (A).
Again, we prove the case when L is even, and the other

case is analogous. Write P as Eq. (26). Make substitu-

tion x→ cos θ
2 , then P (x) = e−iLθ

2 P̃ (eiθ), for some poly-

nomial matrix P̃ (z) of degree no more than L. Moreover,

I − P̃ (eiθ)†P̃ (eiθ) is positive semidefinite for all |z| = 1.
By the Polynomial Matrix Spectral Factorization The-
orem [43, 44], there is a polynomial matrix Q̃(eiθ) of
degree no more than L such that

I − P̃ (eiθ)†P̃ (eiθ) = Q̃(eiθ)†Q̃(eiθ). (31)

Write

e−iLθ
2 Q̃(eiθ) = P1

(
cos

θ

2

)
+ sin

θ

2
Q1

(
cos

θ

2

)
, (32)

then P1(x) is a matrix of L-polynomials and Q1(x) is a
matrix of (L− 1)-polynomials. Since,

Q(eiθ)†Q(eiθ)− P1(x)
†P1(x)− (1− x2)Q1(x)

†Q1(x)

= sin
θ

2

[
P1(x)

†Q1(x) +Q1(x)
†P1(x)

]
,

(33)

in which the left hand side is even about θ and the right
hand side is odd, thus both are zero. As a result, Eq. (30)
holds. Finally, the proof is completed by Lemma 4. □
Like the original QSVT algorithm, for Hermitian ma-

trix input A, one can block-encode polynomial matrix

P (A) without definite parity constraints, by splitting the
polynomial into even and odd parts, namely Pe(A) and
Po(A) such that P (A) = 1

2 (Pe(A) + Po(A)), and using
Linear Combination of Unitaries (LCU) [6] to obtain a
block encoding of P (A). To guarentee the nonnegativity
of I − Pe(A)

†Pe(A) and I − Po(A)
†Po(A), a sufficient

condition is that the maximum eigenvalue norm of P (A)
is less than 1

2 . If P (A) is of degree no more than L, then

the circuit requires L calls to U , U† and their controlled
gates in total.

III. APPLICATION IN QUANTUM
AMPLITUDE ESTIMATION

The general problem of quantum amplitude estimation
is, given a state preparation operator U that prepares a
state |ψ⟩ = U |ψ0⟩ from an easy-to-obtain state |ψ0⟩, and
a projection operator Π, estimate x = ⟨ψ|Π|ψ⟩ with the
best possible accuracy using N number of queries to U
and U−1 in total. In the literature there could be differ-
ent definitions of the amplitude, some like ours [39, 45, 46]

and some
√

⟨ψ|Π|ψ⟩ [9]. We use the former definition
for convience of establishing theories, and many appli-
cations are directly transferable to the latter definition.
For example, in the task of estimating the expectation
value of an observable A with respect to a state |ψ⟩,
where we assume A has all eigenvalues in [−1, 1], then
⟨0| ⟨ψ|U |0⟩ |ψ⟩ = ⟨ψ|A|ψ⟩, where U is a block encoding
of A in the format Eq. (1), and one can estimate it by

applying QAE on the state (|0⟩ |ψ⟩ + U |0⟩ |ψ⟩)/
√
2 and

the projector |+⟩⟨+| ⊗ I.

In this section, we first show that every QAE circuit
that works for any general input has polynomial output
probabilities of x, and any valid probability distribution
can be achieved by a U(N)-QSVT circuit. Then by nu-
merical optimization on achievable polynomials, we cal-
culate the asymptotic bound in several measures of accu-
racy, closing the gap between the optimal accuracy and
existing algorithms in the literature.

A. Achievable Probabilities

Let Pm(x) = P (m|x) denote the probability of obtain-
ing the m-th measurement result when the amplitude is
x. To study QAE that works in the most general setting,
we call a QAE circuit valid if it has a fixed structure
with calls to black boxes U and U−1 such that each out-
put probability Pm(x) is a function of x only. We call
the total number of oracle calls to U and U−1 the degree
of the QAE circuit.

Lemma 5 Each output probability of a valid QAE circuit
of degree N is a polynomial of x of degree no more than
N .
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Proof of Lemma 5. Define the single-qubit unitary,

W (θ) :=

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
. (34)

Consider the QAE problem with state preparation op-
erator W (θ), initial state |ψ0⟩ = |0⟩ and projection oper-
ator |0⟩⟨0|, and the target amplitude is x = cos2 θ

2 .
By induction on N , it is easy to see that the quan-

tum state after N calls to W (θ) and its inverse in to-
tal, the quantum state becomes a polynomial vector of
cos θ

2 and sin θ
2 of degree no more than N , and has parity

(N mod 2). Then any projective measurement probabil-
ity should be of the form P1(x)+sin θP2(x), where P1, P2

are polynomials of x of degree no more than N ,(N − 1),
respectively.

Substituting θ with −θ, the output probability be-
comes P1(x) − sin θP2(x) as a direct result of variable
substitution. Since W (θ) and W (−θ) share the same
amplitude parameter x and thus have the same outcome
probability, we deduct that P2 = 0. Hence, the probabil-
ity is a polynomial of x. □
As an example, if we apply amplitude amplification op-

erator [39],

U(I − 2 |ψ0⟩⟨ψ0|)U−1(I − 2Π), (35)

on U |ψ0⟩ for k times and measure it on {Π, I − Π}, the
output probability of getting Π is,

sin2

(
2k + 1

2
θ

)
=

1− T2k+1(2x− 1)

2
, (36)

an odd polynomial of x of degree 2k + 1, where Tk is
the m-th Chebyshev polynomial of the first kind. This
matches the degree of the QAE circuit since each of theN
amplitude amplification operators adds the degree by two
and an extra one is used for the initial state preparation.

Theorem 6 (Equivalence to U(N)-QSVT) For any
polynomials {Pm(x)} of degree no more than N and non-
negative on [0, 1] such that

∑
m Pm(x) ≡ 1, there is

a choice of {V0, V1, · · · } in the U(N)-QSVT circuit in
FIG. 3 with input |0⟩ |ψ0⟩, such that by measuring all
qubits in the first register, the probability of the m-th out-
come is exactly Pm(x).

Proof of Theorem 6. Replacing x with cos θ
2 in the

Lemma 6 of [2], there is a pair of N -polynomial Am and
(N − 1)-polynomial Bm such that,

Pm

(
cos2

θ

2

)
= Am

(
cos

θ

2

)2

+ sin2 θ

2
Bm

(
cos

θ

2

)2

. (37)

Write

U |ψ0⟩ = cos
θ

2

∣∣∣ψ̃0

〉
+ sin

θ

2

∣∣∣ψ̃1

〉
, (38)

where
∣∣∣ψ̃0

〉
∈ H̃0 and

∣∣∣ψ̃1

〉
∈ H̃1. Define,

|ψ1⟩ = U−1

[
− sin

θ

2

∣∣∣ψ̃0

〉
+ cos

θ

2

∣∣∣ψ̃1

〉]
, (39)

then |ψ1⟩ is orthogonal to |ψ0⟩. Let H0 be the sub-
space spanned only by |ψ0⟩, and H1 its orthogonal com-

plement. Let Π′,Π1,Π, Π̃1 be the projection opera-
tors onto H0,H1, H̃0, H̃1, respectively. Under the basis

(|ψ0⟩ , |ψ1⟩) → (
∣∣∣ψ̃0

〉
,
∣∣∣ψ̃1

〉
), the matrix representation of

U is

U =


|ψ0⟩ |ψ1⟩
cos θ

2
− sin θ

2

∣∣∣ψ̃0

〉
sin θ

2
cos θ

2

∣∣∣ψ̃1

〉 . (40)

In this way, a possible destination quantum state sat-
isfying the outcome probability requirement can be,

N−1∑
m=0

|m⟩
[
Am

(
cos

θ

2

) ∣∣∣ψ̃0

〉
+ sin

θ

2
Bm

(
cos

θ

2

) ∣∣∣ψ̃1

〉]
, (41)

if N is odd, or with
∣∣∣ψ̃0

〉
,
∣∣∣ψ̃1

〉
replaced with |ψ0⟩ , |ψ1⟩

if N is even, which can be achieved by the U(N)-QSVT
using Theorem 5. □

B. Asymptotic Bound

Though it is long known that QAE can achieve the
Heisenberg scaling ∆x = O(N−1), the optimal accuracy
of QAE is not well understood. In this section, we make
use of the 1-1 corespondance between QAE and achiev-
able polynomial probabilities, to calculate the asymp-
totic accuracy bound of QAE by numerical optimization.
Throughout the section we assume x is uniformly dis-
tributed on [0, 1]. We use two measures of accuracy, the
standard deviation error ∆x defined as,

(∆x)2 =
∑
m

∫ 1

0

Pm(x)(x− x̃m)2dx, (42)

which sums over all possible measurement results m,
where x̃m is the Bayesian estimation output if the m-
th outcome is obtained, and the error bound ϵδ at given
confidence level 1− δ defined as,∑

m

∫ 1

0

Pm(x)I|x−x̃m|>ϵδdx = δ, (43)

where I is the indicator function. In particular, we show
that the lower bound with standard deviation error is
tight by giving an explicit construction of probabilities
with the optimal asymptotic accuracy.

Empirical Claim 1 For valid QAE circuits of degree N
and standard deviation error ∆x, as N → ∞, we have
the asymptotic lower bound,

∆x ≳
π√
6N

. (44)

Empirical Claim 2 For valid QAE circuits of degree N
and window error δ, we have the asymptotic lower bound,

ϵ0.1 ≳ 1.63N−1, ϵ0.05 ≳ 2.09N−1, and ϵ0.01 ≳ 3.03N−1.
(45)
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N=64

N=256

N=1024

π2y(1-y)
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y

N
2 r
(y
)

FIG. 4: Numerical calculation of r(y) for different N .
As N goes large, N2 · r(y) approximates π2y(1− y),

shown as the outermost dashed curve.

Proof of Claim 1. We first show that for any polyno-
mial P (x) of degree no more than N and non-negative
on [0, 1],∫ 1

0

P (x)(x− y)2dx ≳
π2

N2
y(1− y)

∫ 1

0

P (x)dx. (46)

There is a series of {Am}Nk=0 such that [47],

P

(
cos2

θ

2

)
=

∣∣∣∣∣
N∑

k=0

Ame
ikθ

∣∣∣∣∣
2

, (47)

or,

P (x) = b0 + 2

N∑
k=1

akTk(2x− 1), (48)

where Tk is m-th the Chebyshev polynomial of the first

kind, and ak =
∑N−k

l=0 alal+k.
Define,

r(y) =min
P

∫ 1

0
P (x)(x− y)2dx∫ 1

0
P (x)dx

=min
a

∑
j,k ajak

∫ 1

0
(x− y)2T|j−k|(2x− 1)dx∑

j,k ajak
∫ 1

0
T|j−k|(2x− 1)dx

.

(49)

where the minimization is over all nonzero polynomials
P of degree no more than N and non-negative on [0, 1],
or nonzero vectors a = (a1, a2, · · · ). Both the numerator
and the denominator are quadratic forms of a, and the
minimum is achieved by the smallest generalized eigen-
value of the pair of coefficient matrices [48].

We calculate the minimum generalized eigenvalue nu-
merically [49] for different N and y, as shown in FIG. 4.

The result shows that r(y) ∼ π2

N2 y(1 − y) holds asymp-
totically.

The output probabilities {Pm(x)} are polynomials of
x of degree no more than N by Lemma 5, such that∑

k Pm(x) ≡ 1. Fixing {Pm(x)}, we assume to use the
Bayesian estimation output,

x̃m =

∫ 1

0
Pm(x)xdx∫ 1

0
Pm(x)dx

, (50)

Achieved

Bound

10 50 100 500 1000

1.05

1.10

1.15

1.20

1.25

N

N
Δ
x

FIG. 5: The standard deviation error of QAE by QPE
with sine initial state. As N goes large, the ratio of ∆x
to π√

6N
approaches 1. Note that ∆x < π√

6N
for finite N

does not violate our asymptotic lower bound.

as estimation of x if the m-th outcome is obtained, to
minimize the square cost.
On one hand,

(∆x)2 =
∑
m

∫ 1

0

Pm(x)(x2 − 2xx̃m + x̃2m)dx

=

∫ 1

0

[∑
m

Pm(x)

]
x2dx−

∑
m

P̃mx̃
2
m

=
1

3
+

[∑
m

P̃mx̃m(1− x̃m)−
∑
m

P̃mx̃m

]

=− 1

6
+
∑
m

P̃mx̃m(1− x̃m),

(51)

in which
∑

m P̃mx̃m =
∫ 1

0
[
∑

m Pm(x)]xdx = 1
2 .

On the other hand,

(∆x)2 ≥
∑
m

r(x̃m)

∫ 1

0

Pm(x)dx

≳
π2

N2

∑
m

P̃mx̃m(1− x̃m).

(52)

Finally,

(∆x)2 ≳
π2

N2

(
(∆x)2 +

1

6

)
≳

π2

6N2
. (53)

□
A common approach to QAE is to construct a rota-

tion unitary Q = U−1(2Π − I)U(2Π′ − I), where Π′ :=
|ψ0⟩⟨ψ0|, with rotation angle θ satisfying x = cos2 θ

2 .
Then we use the quantum phase estimation (QPE) al-
gorithm to estimate θ. Suppose we use n ancilla qubits
for QPE and let N = 2n. One may use the sine initial
state, √

2

N + 1

N−1∑
j=0

sin

(
j + 1

N + 1
π

)
|j⟩ , (54)

to minimize the standard deviation error of the phase
estimation [50]. The probability of the m-th outcome
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Bound

Achieved
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0.5
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0.7

Nϵ

δ
ϵ

FIG. 6: A comparison among the lower bound δ̃ϵ, the δ
given by the ChebPE algorithm and our selected

polynomials Eq. (47) in which

Am = 2
N+1 sin

(
k+1
N+1π

)
ei

2πmk
N for m = 0, · · · , N − 1,

labelled as Achieved. The vertical axis gives one minus
the confidence level for theoretical results or the

frequency of error points for experimental results, and
the horizontal axis gives the error bound times N .

is Eq. (47) in which Am = 2
N+1 sin

(
k+1
N+1π

)
ei

2πmk
N for

m = 0, · · · , N−1. With the explicit expression of Pm(x),
we can calculate the ∆x directly [49] by Eq. (42), in
which x̃k is the Bayesian estimation Eq. (50). The re-
sults in FIG. 5 shows that ∆x ∼ π√

6N
. However, it

requires (N − 1) calls to Q, i.e., 2(N − 1) calls to U
and U−1 in total to achieve. As a result, there is an
extra double factor away from the lower bound in the
QPE approach compared to our U(N)-QSVT one, since
the probabilities have degrees only half the number of
calls. But if one achieves this probability distribution by
U(N)-QSVT, the asymptotically optimal accuracy can
be achieved, thus the bound in Claim 1 is tight.

Similar analysis can be done for the window error to
give Claim 2 on the window cost, with proof in Appx. A.
We compare the confidence level δ given by the lower
bound, our selected polynomials that achieve the lower
bound in standard deviation error, and the ChebPE algo-
rithm which is an adaption for the ChebAE algorithm for
estimating the amplitude in our definition that achieves
the best-known window cost error scaling to our knowl-
edge [9], in which we set parameters ϵ = α = 0.05, in
FIG. 6. This time the selected polynomials do not achieve
the lower bound, but still gives a better error scaling than
the best-known algorithm. More precisely, our selected
polynomials give

ϵ0.1 ≈ 2.02N−1, ϵ0.05 ≈ 2.44N−1, and ϵ0.01 ≈ 3.31N−1.
(55)

As it does not saturate the lower bound, one may be
able to find other polynomials that behave better than
ours, and realize them by U(N)-QSVT.

IV. DISCUSSION ON MULTI-VARIATE
QUANTUM SIGNAL PROCESSING

As another application, in this section we discuss a spe-
cial case of multi-variate quantum signal processing (M-
QSP) in which the variables commute. In this task, we
are given access to multiple unitary inputs U1, U2, · · · , Un

and a target polynomial function f(U1, U2, · · · , Un), and
we hope to construct a unitary operator in quantum cir-
cuits to realize (

f(U1, U2, · · · , Un) ∗
∗ ∗

)
. (56)

It suffices to study scalar input z = {z1, · · · , zn} with
each component being a complex number of unit length.
Before everything, we introduce some basic arithmetic
operations on block encoding.

Lemma 6 (Linear Combination) Given a set of uni-
taries {Uj} and positive numbers {αj} such that

∑
j αj =

1. Let V be a unitary mapping |0⟩ to
∑

j

√
αj |j⟩. Then,

V †

(∑
j

|j⟩⟨j| ⊗ Uj

)
V, (57)

is a block encoding of
∑

i αiUi.

This technique is known as the linear combination of
unitaries (LCU) [42]. In some references {αj} is allowed
to be complex, but here we absorb the global phase into
{Uj} for simplicity. Naturally, if each Uj block-encodes
a smaller matrix Aj , then we obtain a block encoding of∑

i αiAi.

Lemma 7 (Dot Product) Given block encoding of two
matrices A and B with compatible dimensions to define
the dot product AB, says

U |0⟩ |ψ⟩ = |0⟩A |ψ⟩+
∣∣0⊥〉 |· · ·⟩ , (58)

V |0⟩ |ψ⟩ = |0⟩B |ψ⟩+
∣∣0⊥〉 |· · ·⟩ . (59)

Then a block encoding of BA is obtained by,

|0⟩ |0⟩ |ψ⟩
U [1,3]−−−−→|0⟩ |0⟩A |ψ⟩+

∣∣∣0⊥
〉
|0⟩ |· · ·⟩

V [2,3]−−−−→|0⟩ |0⟩BA |ψ⟩

+
∣∣∣0⊥

〉
|0⟩ |· · ·⟩+ |0⟩

∣∣∣0⊥
〉
|· · ·⟩ ,

(60)

where the indices in the square brackets indicate which
two registers the unitary is acting on.

We show two approaches to block-encode multi-variate
polynomials p(z), one by U(2)-QSP and the other by
U(N)-QSP. First, suppose we can write

f(z) =

r−1∑
j=0

αj

n∏
k=1

pj,k(zk), (61)
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for polynomials {pj,k} such that |pj,k(z)| ≤ 1 for all |z| =
1, and positive numbers {αj} such that

∑
j αj = 1. Any

polynomial can be written in this form up to some scal-
ing factor. Let Uj,k be a block encoding of pj,k(z), then
we can first block-encode each product

∏
k pj,k(zk) by

Lemma 7, and then combine them by LCU in Lemma 6.
Every multivariate polynomial can be writen in the form
of Eq. (61) up to some scaling factor, since we can always
express the polynomial as sum of products of monomial
terms, though one may find more efficient expressions.

With the tool of U(N)-QSP, we have more flexibility in
constructing block encoding with the two lemmas. As an
example of bivariate polynomials, consider the following
function

f(z1, z2) =

r−1∑
j=0

pj(z1)qj(z2), (62)

for polynomials {pj , qj} such that
∑

j |pj(z)| ≤ 1 and∑
j |qj(z)| ≤ 1 for all |z| = 1. Actually, if we write the

target function as a quadratic form f(z1, z2) = Z⊤
1 AZ2,

where Z1 = (1, z1, z
2
1 , · · · )⊤, Z2 = (1, z2, z

2
2 , · · · )⊤ and A

is a constant matrix, then for any decomposition A =
B⊤C, f(z1, z2) = (BZ1)

⊤(CZ2), which is equivalent to
Eq. (62) when we let pj(z1), qj(z2) be the j-th component
of the vectors BZ1, CZ2, respectively. By Theorem 3, we
can construct U(N)-QSP of the r × 1 matrix P (z1) and
the 1 × r matrix Q(z2), whose entries are pj(z1) and
qj(z2), respectively. The target function is then equal to
the dot product Q(z2)P (z1), and can be block-encoded
accordingly. Note that the M-QSP by QSP on U(2) is a
special case of the M-QSP by QSP on U(N) when writing
f(z1, z2) =

∑
j [
√
αjpj(z1)][

√
αjqj(z2)].

In both schemes, there are constraints on the magni-
tude of the polynomials. A necessary constraint on block
encoding requires that |f(z1, z2)| ≤ 1 for any |z| = 1
and |z2| = 1. We can give deterministic answers to the
following questions. However, it is not easy to fully char-
acterize achievable functions of M-QSP by QSP on U(N)
or U(2), like what has been done in univariate settings.

• Given any bivariate polynomial f(z1, z2) that
|f(z1, z2)| ≤ 1 for all |z1| = 1 and |z2| = 1, is it
achievable with M-QSP by QSP on U(2)/U(N)?

• Given any bivariate polynomial f(z1, z2) achievable
by QSP on U(N), is it also achievable with M-QSP
by QSP on U(2)?

In Appx. B, we give negative answers to both questions
with two counter-examples.

Compared to previous M-QSP frameworks in [37, 38],
in which alternative signal inputs of different variables
are used to achieve the same goal, our approach guaran-
tees that any function is achievable up to some scaling
factor, and the quantum circuit to achieve it can be de-
termined in a linear time. However, our framwork works
only for commutable variables, and also non-commutable

variables if they appear in a fixed order in the target func-
tion. If the variables are non-commutable and appear in
any order, for example f(A,B) = AB − BA, one may
treat it as a tri-variate function f(A,B,C) = AB − BC
with C = A and then apply our M-QSP framework, but
the efficiency is not guaranteed in more complex target
functions. It remains an open question how to give an
MQSP framework that works in the most general case
where variables are non-commutable and appears in any
order in the target function. Our framework may be fur-
ther integrated with other toolkits, for example the gad-
gets in [37, 51], to inspire more possibilities in quantum
algorithms.

V. CONCLUSION AND OUTLOOK

We generalize the framework of quantum signal pro-
cessing and quantum singular value transformation to
U(N) by introducing multiple ancilla qubits, and the
phase angles are changed into arbitrary controlled uni-
tary gates correspondingly. As a first application, we
show that any output probability in quantum amplitude
estimation is a polynomial of the amplitude, and any
set of polynomial probabilities summed to one can be
achieves with the help of the U(N)-QSVT framework.
Moreover, by numerical optimization on achievable prob-
abilities, we give empirical lower bounds on the resource
cost of quantum amplitude estimation. In particular, the
asymptotic bound of standard deviation error is tight as
we explicitly show a set of probabilities achieving the
bound. The results can be a complement on the grand
unification of quantum algorithms [3], in which we gener-
alize the QSP for binary decision problem into multiple
one. Finally, we show that the framework can be used to
block-encode multi-variate polynomial functions, which
can also be achieved by the original quantum signal pro-
cessing framework on U(2), but our framework extends
the set of achievable polynomials.

Future work on QSP and QSVT on U(N) may focus
on efficient classical evaluation and the circuit realization
of the tunable elements. Just like the evaluation of phase
angles in QSP on U(2) [31–33], though the computation
is recursive and explicit when all the polynomial entries
are given, as shown in the proof of Theorem 4, it remains
a computational challenge when not all of them are given,
as in the case of Theorem 3.
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FIG. 7: Numerical caluclation of rϵ(y) for different N
with ϵ = 3/N . The results show that when choosing ϵ
to have the Heisenberg scaling in N , rϵ(y) converges at

each y.

Appendix A: Proof of the empirical claims on
asymptotic bound in quantum amplitude estimation

Proof of Claim 2. Define,

rϵ(y) = min
P

∫
P (x)I|x−y|>ϵdx∫

P (x)dx
. (A1)

Then the window cost is given by,

δ =
∑
k

∫
Pk(x)I|x−x̃m|>ϵdx ≥

∑
k

rϵ(x̃m)P̃m. (A2)

By similar numerical calculation on generalized eigen-
values, we observe that when ϵ scales as N−1, the win-
dow cost tends to a constant, as shown in FIG. 7. This
illustrates a different aspect of the Heisenberg scaling in
QAE. Based on the empirical observation that rϵ(y) is
continuous in y and upper bounded by rϵ

(
1
2

)
,∣∣∣∣∣

∫ 1

0

rϵ(y)dy −
∑
k

rϵ(x̃m)P̃m

∣∣∣∣∣
=

∣∣∣∣∣∑
k

∫ 1

0

[rϵ(y)− rϵ(x̃m)]Pk(x)dx

∣∣∣∣∣
≤

∣∣∣∣∣∑
k

∫ 1

0

[rϵ(y)− rϵ(x̃m)]Pk(x)I|x−x̃m|≤ϵdx

∣∣∣∣∣
+

∣∣∣∣∣∑
k

∫ 1

0

[rϵ(y)− rϵ(x̃m)]Pk(x)I|x−x̃m|>ϵdx

∣∣∣∣∣
≤ max

k,|y−x̃m|≤ϵ
|rϵ(y)− rϵ(x̃m)|

+rϵ

(
1

2

)∑
k

∫ 1

0

Pk(x)I|x−x̃m|>ϵdx

→rϵ

(
1

2

)
δ,

(A3)

So asymptotically,

δ ≳

∫ 1

0
rϵ(y)dy

1 + rϵ
(
1
2

) =: δ̃ϵ. (A4)

https://github.com/helloluxi/oqae
https://github.com/helloluxi/oqae
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FIG. 8: Numerical caluclation of δ̃ϵ in Eq. (A4) for
different N .

We perform numerical calculation on δ̃ϵ for different N ,
as shown in FIG. 8. By numerical root search with N =
1024, which is computationally feasible and close enough
to the limit, we obtain Eq. (45). □

Appendix B: Two counter-examples regarding
bivariate QSP

First, we show a counter-example of a bivariate func-
tion that has absolute values bounded by one but cannot
be realized with M-QSP by QSP on U(2). Consider,

F (z1, z2) = z1z2 −
(1− z1)

2(1− z2)
2

16
. (B1)

The magnitude constraint is satisfied since

|F (z1, z2)| =
∣∣∣∣1− (1− Re z1)(1− Re z2)

4

∣∣∣∣ ≤ 1, (B2)

for all |z1| = 1 and |z2| = 1. In the set S =
{(z1, z2) : z1 = 1 or z2 = 1}, |F (z1, z2)| = 1. If
F (z1, z2) =

∑
j pj(z1)qj(z2), such that

∑
j |pj(z)|2 ≤ 1

and
∑

j |qj(z)|2 ≤ 1 for all |z| = 1, then on S, the Cauchy
inequality

|F (z1, z2)|2 ≤
∑
j

|pj(z1)|2
∑
j

|qj(z2)|2, (B3)

is saturated, thus pj(z1) = cqj(z2)
∗ for each j and a

common unit complex constant c. Actually, for any
|z1| = |z2| = 1, since (z1, 1), (z2, 1) ∈ S, pj(z1) =
cqj(i)

∗ = pj(z2). Therefore, each pj(z1) is constant on
the unit complex circle, thus F (z1, z2) is independent of
z1, which is a contradiction.
Next, we show a counter-example of bivariate polyno-

mial that can be realized with M-QSP by QSP on U(N)
but not by QSP on U(2), to show that M-QSP by QSP on
U(N) can enlarge the set of achievable functions. Con-
sider,

F (z1, z2) =

n−1∑
j=0

B(z1w
∗
j )B(z2w

∗
P[j]) (B4)

where P is a permutation of {0, 1, · · · , n− 1}, and

B(z) =
1

n

n−1∑
j=0

zj . (B5)

It is achievable with M-QSP by QSP on U(N), in which
pj(z1) = B(z1w

∗
j ) and qj(z2) = B(z2w

∗
P[j]). However,

suppose it is also achievable with M-QSP by QSP on
U(2) for some polynomials {pj , qj} such that |pj(z)| ≤ 1
and |qj(z)| ≤ 1 for all |z| = 1, and each αj > 0. Then,
that F (wj , wP[j]) = 1 for all j implies that pk(wj) =
qk(wP[j])

∗ and |pk(wj)| = |qk(wP[j])| = 1 for all j, k.

Note that zn(|pj(z)|2 − 1) is a polynomial of degree at
most (2n− 1) but have (2n) algebraic zeros, i.e., double
zero at each n-th root of unity, thus is a zero polyno-
mial. So each |pj(z)|2 ≡ 1 on |z| = 1 and thus should
be of the form pj(z) = αzβ for some unit-length com-
plex αj and integer βj , and so is each qj . Picking out
the k that pk(z1) = z1 with coefficient absorded into
qk, among all n! possible permutations P, there are at

most n2 permutations with α ∈ {1, ei 2π
n , · · · , ei

2π(n−1)
n }

and β ∈ {0, 1, · · · , n − 1} that is necessary for pk(wj) =
qk(wP[j])

∗ for all j, causing a contradiction.
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