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Abstract—Quantum computing has emerged as a revolutionary
paradigm with the potential to solve computationally intractable
problems. However, the practical realization of quantum al-
gorithms faces significant challenges due to noise and errors
inherent in quantum systems. Hamiltonian simulations serve
as a cornerstone in quantum computing, providing insights
into quantum dynamics and enabling the study of quantum
algorithms. This paper studies error mitigation in analog-based
Hamiltonian simulations as they have native support for generat-
ing Hamiltonians as opposed to digital-based simulations, which
results in shorter pulse schedules to simulate the Hamiltonians.
We further aim to enhance the accuracy and reliability of these
simulations through error mitigation techniques.

This research explores several error mitigation techniques
tailored for analog-based Hamiltonian simulations. Among them,
Zero-Noise Extrapolation (ZNE) mitigates errors by extrapolat-
ing simulation results to the ideal noise-free scenario. Building
upon ZNE, Folding-Free ZNE (FFZNE) introduces novel use
of the infinite error point to address the challenges posed by
folding techniques. Additionally, Reliability-Based ZNE (RBZNE)
leverages a mix of both techniques, utilizing the folding method
and the infinite error point.

Through empirical studies and rigorous analysis, this paper
evaluates the efficacy and limitations of these error mitigation
techniques in analog-based Hamiltonian simulations on both
noise simulator and real quantum hardware. The experimental
results shed light on the comparative performance of ZNE,
FFZNE, and RBZNE, understanding their strengths and weak-
nesses in mitigating errors across different quantum systems
and noise conditions. By providing the understanding of these
techniques, this research contributes to the advancement of error
mitigation strategies in quantum computing, paving the way for
more reliable and accurate quantum simulations.

Index Terms—Hamiltonian Simulation, Quantum Error Miti-
gation

I. INTRODUCTION

Quantum simulation [12], inspired by Richard Feynman’s
vision, has emerged as a promising avenue in modern physics,
aiming to simulate quantum systems using other quantum
systems [11]. While classical computers struggle with the com-
plexities of quantum simulation [10], [25], quantum computers
offer a natural fit for this task.

One significant application lies in simulating the time evo-
lution of quantum systems, offering insights into phenomena
previously inaccessible. This capability has profound impli-
cations across various domains, including machine learning,

where Quantum Hamiltonian Descent [18] outperforms classi-
cal counterparts like Gradient Descent. Also it has applications
in Quantum Walks [5], which is used in understanding network
dynamics and graph-based machine learning. Moreover, quan-
tum Hamiltonian simulations play a vital role in elucidating
molecular properties [8], [15]-[17], facilitating advancements
in drug discovery, materials science, and catalysis. Addition-
ally, they offer a deeper understanding of magnetic materials
at the quantum level [14], propelling the development of
transformative technologies like spintronics and quantum com-
puting. These diverse applications underscore the profound
impact of Hamiltonian simulations in pushing the boundaries
of scientific discovery.

The quest for quantum simulation has led researchers to
explore digital quantum simulators, utilizing gates to evolve
the Hamiltonian of the system. However, recent experimental
insights [25] have underscored the advantages of Hamiltonian-
oriented Analog Quantum simulation, particularly within the
realm of Noisy Intermediate-Scale Quantum (NISQ) machines.
Unlike their digital counterparts, analog quantum simulators
offer a more direct pathway to emulate the intricate dynamics
of quantum systems. This paradigm shift has prompted the de-
velopment of SimuQ [25], an analog-based compiler designed
to simulate Hamiltonian systems on quantum computers. We
leverage the SimuQ compiler for simulating Ising Model
Hamiltonians in this paper.

While analog simulations exhibit promise in reducing noise
encountered within quantum systems when probing a Hamil-
tonian [25], imperfections persist when implementing these
simulations on real hardware, as evidenced by experiments
conducted in this research. In light of these challenges, our
research endeavors to explore error mitigation techniques
commonly employed in digital quantum circuits [13], [24] to
ascertain their efficacy in enhancing the accuracy of simula-
tions on analog-based devices.

Through empirical studies and rigorous analysis, this paper
evaluates the efficacy and limitations of the following error
mitigation techniques in analog-based Hamiltonian simula-
tions: Zero-Noise Extrapolation (ZNE) [13], Folding-free ZNE
[24], and reliability-based ZNE. Our findings include: (1)
FFZNE being more effective error mitigation technique than



ZNE and RBZNE on the noise simulator with noise profiles.
(2) In contrast, ZNE and RBZNE outperform FFZNE on the
real backends. The achieved improvement in the fidelities of
the Hamiltonian simulations on average is by 16.11% on the
noise simulator and 4.80% on the real backends.

The remainder of this paper is organized as follows. Section
IT provides a background on the Hamiltonian of a system,
Ising Hamiltonian models, Hamiltonian Simulations, and the
SimuQ compiler which generates the analog circuits for our
experiments. Section III discusses the implementation of the
error mitigation strategies and explains how the fidelity is
calculated to assess the accuracy of the simulations. Section
IV discusses the findings from our experiments. Section V
concludes the paper and discusses the future directions.

II. BACKGROUND
A. Ising Models

Ising Hamiltonian models [23] serve as fundamental frame-
works for understanding the behavior of complex systems in
various fields, including statistical mechanics [3], condensed
matter physics [2], and computational biology [9], [21]. Orig-
inating from the study of magnetic materials, Ising models
describe the interaction between spins (quantum or classical)
arranged on a lattice. The Hamiltonian of an Ising model
typically consists of terms representing the interaction between
neighboring spins and an external magnetic field,

In this research paper, these are the target Hamiltonian sys-
tems which we are aiming to simulate on quantum computers.
More specifically, we are utilizing Ising Chain models of site
sizes from 4 to 10. The hamiltonian of an Ising chain is
represented by:

R n
H= > JnZiZx+ Y hiX; (1)
j=1

1<j<k<n
where Jji, h; € R.

B. Hamiltonian Simulation

The evolution of a quantum system, starting from a quan-
tum state represented by a high-dimensional complex vector
|1(0)), obeys the Schrodinger equation [1], [4], [25]:
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Hamiltonian simulation describes the dynamics of quantum
systems by utilizing the Schrodinger equation, which governs
the evolution of quantum states over time. In essence, the
Hamiltonian operator encapsulates the total energy of the
system and dictates how it changes with time [1]. By solving
the Schrodinger equation, one can predict the time evolution
of quantum states under the influence of a given Hamiltonian
operator.

The output of a Hamiltonian simulation typically includes
the evolution of quantum states over time, providing insights
into how the system’s properties change as it undergoes
dynamic processes. This output can manifest as wavefunctions,

density matrices, or expectation values of observables, depend-
ing on the specific simulation method employed. For instance,
in simulating chemical reactions, the output might reveal the
probabilities of different reaction pathways or the final state of
the system after a specified duration. In this study, we focus
on the final state of a quantum system after a specified time
interval as the output of the quantum simulation.

Moreover, Hamiltonian simulations can help us understand
key physical phenomena such as quantum phase transitions,
entanglement dynamics, and energy transfer mechanisms. By
studying the time evolution of quantum systems through
Hamiltonian simulation, researchers can gain deeper insights
into the behavior of complex systems that are otherwise
challenging to analyze using classical computational methods.

C. SimuQ Analog Compiler

SimuQ [25] is the first framework for quantum Hamilto-
nian simulation that supports Hamiltonian programming and
pulse-level compilation [7] to heterogeneous analog quan-
tum simulators. We need to specify the target quantum
system with Hamiltonian Modeling Language (HML), and
the Hamiltonian-level programmability of analog quantum
simulators is specified through a new abstraction called the
abstract analog instruction set (AAIS) and programmed in
AAIS Specification Language by hardware providers. Through
a solver-based compilation, SimuQ generates executable pulse
schedules for real devices to simulate the evolution of desired
quantum systems. SimuQ uses the Lie-Trotter formula, which
is a first order product formula for the trotterization step [19]
which also introduces approximation errors in the simulation.
In this paper, we are not focusing on mitigating this approxi-
mation error, but only on the environmental error that is caused
by executing the simulations on NISQ era quantum computers.

III. METHODS

A. Error Mitigation Schemes

In this paper, we explore the following error mitigation
strategies:

1. Zero-Noise Extrapolation (ZNE): This method [13]
introduces errors into the system through circuit folding.
Specifically, we concentrate on the global folding of the gates.
By incrementally varying the noise factor in the steps of 2
Ge., U U ), starting from a noise factor of 1, we conduct
simulations for different circuits. Subsequently, we extrapolate
the results to the zero noise case.

2. Folding-free Zero-Noise Extrapolation (FFZNE): Un-
like ZNE, this approach [24] does not use circuit folding. It
operates on the assumption that under infinite depolarization
noise conditions, the state probability distribution would be
maximally mixed, with each state having an equal probability
of occurrence. Utilizing this assumption, we can extrapolate to
the ideal state distribution using only two points. To represent
the infinite error case on graphs, the x-axis can be adjusted
to denote circuit reliability, where a reliability of O signifies
the infinite error scenario. Determining the reliability of the



circuit is essential to fix the x-axis for the graph, with the
y-axis representing the state probability of occurrence.

To calculate the circuit reliability, we use Estimated Success
Probability (ESP) [22] defined as follows:

I
Circuit Reliability = [ [(1 — E;)"" (3)
3

where,

I: Number of different types of instructions

FE;: Error rate of the instruction type ¢

N;: Number of times the instruction type ¢ was applied.

To compute the circuit reliability, we need the error rates
of different types of instructions (or gates) and their counts
in the circuit. Let us examine one sample circuit that SimuQ
generates. In this case, we have considered the scenario where
N =4, T =1 (N: number of qubits and T: Time duration
of the simulation), and the backend system for which it is
compiled is ibm_brisbane.

TABLE I
INSTRUCTION TYPES AND THEIR COUNTS USED IN SIMUQ GENERATED
CIRCUITOF N =4ANDT =1

Instruction Name | Counts
1z 61

SX 18

rzx 18

X 10
measure 4

We can readily obtain the error rates of the instructions sx
and rz from the backend properties. However, the instructions
rzx and rx are custom instructions compiled specifically for
each backend. Hence, for each backend, we must acquire the
error rates of these rzx and rx gates. To obtain these error
rates, we conduct the Interleaved Randomized Benchmarking
(InterleavedRB) experiments.

Interleaved Randomized Benchmarking (RB) [6], [7], [20]
serves as a reliable technique for estimating the average error-
rate associated with a specific quantum gate. In an interleaved
RB experiment, two sequences are generated: one containing
random Cliffords as per the standard RB protocol, and the
other incorporating the interleaved gate under examination.
These sequences are executed on a quantum backend, follow-
ing which the probabilities of returning to the ground state are
computed. Subsequently, the experiment fits two exponentially
decaying curves to the obtained data, facilitating the estimation
of the error associated with the interleaved gate.

3. Reliability-based Zero-Noise Extrapolation (RBZNE):
This method combines elements of both ZNE and FFZNE.
It involves global folding to introduce errors into the system
while also leveraging the maximally mixed state assumption
used in FFZNE. Similar to FFZNE, RBZNE necessitates
circuit reliability values for setting the x-axis. The process
for calculating circuit reliability is the same as for FFZNE.

There is a scalability challenge to use these extrapolation
techniques to refine the output states, as the state has 2V

coefficients, where N is the number of qubits. To address
this, a top-k approach is adopted for error mitigation of state
probabilities. This involves finding top k state probabilities (or
coefficients) and exclusively performing extrapolation for just
these top-k values. This way, the post-processing overhead is
constrained to a constant factor [24]. For consistency, in all
the experiments, a top-k factor of 10 is maintained. In other
words, we perform error mitigation for the 10 highest state
coefficients.

Subsequently, the top-k extrapolated values are normalized
to adhere to the additive principle of probabilities, wherein the
total probability equals 1.

B. Evaluating Simulation Results

As the output of the simulations in this study is the state
probabilities of the quantum system after a time interval T, we
use the following two ways to evaluate the simulation accuracy
or the noise impact.

Hellinger Fidelity: This metric quantifies the similarity
between two probability distributions. It is calculated using
the Hellinger distance, a measure of the difference between
probability distributions. A higher Hellinger fidelity indicates
a closer resemblance between the simulated and target proba-
bility distributions. The range of the hellinger fidelity lies from
0to 1.

Fi(p,q) = <Z m) )

where p and q are probability distributions.

Total Variation Distance: This metric measures the dis-
crepancy between two probability distributions by calculating
the total difference between corresponding probabilities. A
lower total variation distance suggests a more accurate simula-
tion, with smaller deviations between the simulated and target
probability distributions. Again, the range for Total Variation
distance lies between O to 1.

1
TV(p,a) =5 > Ipi — ail 5)

where p and q are probability distributions.

IV. RESULTS
A. Evidence of Noise in Simulations

Fig. 1 displays a color-coded matrix of Total Variation Dis-
tance for each of the simulations, indicating the closeness of
the state probability distributions between an ideal simulation
(free from environmental noise and approximation errors by
Trotterization) and a noise-free simulator. In this matrix, dark
purple hues represent an accurate simulation as they have low
TV values as seen in the legend.

For instance, in the case of N = 4 and T = 0.1, the
TV value is 0.0043, indicating a highly accurate simulation.
Observing the trend, simulations with higher 7' values tend
to diverge from the ideal scenario, particularly notable in the
column representing 7' = 2.0. Additionally, as the N value



increases, there’s a gradual decrease in the fidelity, although
not as pronounced as the variations observed with increasing
the T values.

-1.0
=) 0.12(0.14(0.15(0.16|0.16|0.16(0.28(0.50

- 0.8
= ¥
= c
- i
= 0.04|0.C .
_g 060
c
o 9
—
° o
=
8 © 0.0¢ 04 @
£ >
5 ©
= °
=

010203040506070809101520
Time duration of the simulation (T)

Fig. 1. TV values heatmap between ideal and noise-free case from simulators
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Fig. 2. TV values heatmap between ideal case and noisy case from real
backend results

Fig. 2 depicts the TV value heatmaps for experiments
which were conducted on four different real IBM quantum
systems: ibm_brisbane, ibm_kyoto, ibm_nazca, and
ibm_sherbrooke. The parameters N and 7 maintain the
same range as in the simulator experiments. Here, we can
observe discrepancies between the simulations, suggesting the
significant effect of noise on conducting the simulations on the

real backends as there are very few regions with dark purple
hues.

B. Experimentation on Simulator with Noise Profiles

For the below results, we have run the simulation circuits
on a noise simulator loaded with noise profiles of the 4
IBM backends that were mentioned previously. The noise
profiles for each system were created using the error rates
of the custom gates generated by SimuQ, estimated using
InterleavedRB experiments, and the error rates of the standard
gates available in backend properties of each of the IBM
systems considered.

1) Trend line analysis: Fig. 3 represents the line trend of
TV values of the simulation results after performing error
mitigation by ZNE, FFZNE and RBZNE methods, varying
the parameters N and T on ibm_nazca noise simulator.
Noise baseline represents the initial TV value when no error
mitigation was performed. Noise free baseline represents the
TV value for the noiseless simulation. All these TV values
are computed w.r.t. the ideal case, which is free from noise
and Trotterization approximation errors . Fig. 4 represents
the percentage change of the TV values with reference to
the initial noisy TV values where no error mitigation was
performed. Any point above the baseline represents a positive
improvement in the simulation accuracy.
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Fig. 3. Trend lines for TV values after each of the error mitigation techniques

From these figures, we can see that FFZNE performs on an
average better than ZNE and RBZNE on the simulator with
ibm_nazca noise profile. This can be attributed to the fact
that FFZNE utilizes a linear extrapolation, which responds bet-
ter to the simulator environment errors. ZNE performs better at
the start of the simulation and the performance degrades with
time evolution, whereas the RBZNE performance improves
with time evolution.

2) Aggregation analysis: Figures 5 and 6 give a compre-
hensive idea about the performance of each of the methods on
the simulator with noise profiles of different backends.
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Fig. 4. Percentage change trend lines in TV values after the error mitigation
techniques

These figures suggest a similar picture as suggested by the
line plots in figures 3 and 4. Also, we can observe that the
improvement in the fidelity of the simulation decreases with
an increase in the number of qubits from figure 5. Except for
ibm_kyoto, FFZNE outperforms ZNE and RBZNE. Also a
maximum of 25.68% improvement in fidelity can be seen on
ibm_brisbane for N = 4 case for the entire time evolution
on an average.

Also, Fig. 6 gives the overall performance of the error
mitigation techniques using the two metrics, Hellinger Fidelity
and Total Variation Distance. We can observe that these tech-
niques significantly improve the TV values than HF values.
A maximum of 16.11% improvement can be observed for
TV, whereas 2.23% can be observed for HF values. Also, a
general trend of improvement in the fidelity is observed after
performing any of the error mitigation technique. We can also
observe the order of performance benefits from this figure,
suggesting FFZNE having the maximum improvement on an
average, followed by RBZNE and then ZNE.

C. Experimentation on Real IBM Backend Systems

For the below results, we have run the simulation circuits
on the four real IBM backend systems mentioned previously.

1) Trend analysis: Figures 7 and 8 provide similar trends
discussed in figures 3 and 4, with only difference being the
experiments being conducted on real ibm_nazca hardware.

Upon examination of the graphs, it is evident that ZNE
and RBZNE exhibit significant improvements compared to
FFZNE. This disparity can be attributed to the use of a
quadratic fit for extrapolating results in ZNE and RBZNE,
whereas FFZNE employs a linear fit. This distinction is
reflected in the volatility of the changing trend, with ZNE
and RBZNE displaying greater fluctuations compared to the
smoother progression observed with FFZNE. Another thing
that we can observe is that there are more cases where there
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is a decrease in the fidelity after error mitigation, than for the
simulator case which was discussed previously.

2) Aggregation analysis: Figures 9 and 10 represent similar
information portrayed in Figures 5 and 6, with only difference
being the experiments being conducted on real IBM backends.

Fig. 5 also suggests a similar trend where there is more
improvement for lower values of N on an average, except for
the case of ibm_brisbane. Fig. 9 gives a better view to
analyze the performance on different systems with varying N,
where only for ibm_brisbane we observe a decrease in the
fidelities by any of the methods on an average. Fig. 10 gives
an idea of the performance of each of the error mitigation
techniques to improve the HF and TV values. We can observe
that a difference from the simulator results that HF values are
also improved on par with TV values on average.

V. CONCLUSIONS

In this paper, our exploration of error mitigation techniques
for analog-based Hamiltonian simulations on quantum com-
puters yields valuable insights. Through empirical analysis,
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we evaluated the effectiveness of three techniques: Zero-
Noise Extrapolation (ZNE), Folding-Free ZNE (FFZNE), and
Reliability-based ZNE (RBZNE). Our findings reveal that all
three methods contribute to improving simulation accuracy by
mitigating noise-induced errors in analog quantum systems.
The choice of extrapolation technique, particularly quadratic fit
utilized by ZNE and RBZNE, plays a pivotal role in their per-
formance on the real hardware simulations, overshadowing the
limited effectiveness of FFZNE'’s linear fit, while the opposite
was observed for noise simulator performance. Furthermore,
experiments utilizing InterleavedRB provided critical insights
into error rates of custom instructions and the validation of
mitigation strategies by helping to create noise profiles to be
used with simulators.
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Fig. 10. Aggregated results of TV and HF percentage change using Geometric
means on the real IBM backends

Looking forward, there are promising avenues for future
research to expand upon these findings. Firstly, exploring error
mitigation strategies across different Hamiltonian systems be-
yond the Ising model could offer insights into their adaptability
and performance in diverse quantum computing applications,
such as the Heisenberg model or Hubbard model. Secondly,
extending the analysis to alternative backend systems beyond
IBM, such as QuERA and IonQ, could help understand
platform-specific nuances and inform optimization strategies
tailored to specific hardware configurations. By pursuing these
directions, we can further advance error mitigation in quantum
computing, fostering the development of more robust and
reliable simulations across a spectrum of applications and
platforms.
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